sbPOM (Stony Brook Parallel Ocean Model)

Stony Brook Parallel Ocean Model (sbPOM) for execution on workstations, Linux clusters and massively parallel supercomputers. The sbPOM is derived from the Princenton Ocean Model (POM).

ParallelOceanPOMPrincenton Ocean Model

Contributor(s)

Initial contribute: 2019-12-28

Authorship

:  
Institut Mediterrani d
:  
School of Marine and Atmospheric Sciences, Stony Brook University, USA
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveOcean regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: Jordi, Antoni, and Dong-Ping Wang. "sbPOM: A parallel implementation of Princenton Ocean Model." Environmental Modelling & Software 38 (2012): 59-61https://doi.org/10.1016/j.envsoft.2012.05.013

The procedure for the parallelization of POM is the implementation of a message-passing code using two-dimensional data decomposition of the horizontal domain. This approach ensures the portability across a large variety of parallel machines, and allows to maintain the same numerical algorithms used in the serial code. The horizontal global domain is thus partitioned into two-dimensional local domains using a Cartesian decomposition, and the vertical dimension is not divided. Each local domain (i.e. each processor) integrates independently the code on the local domain. The computation applied to each local domain is the same as that applied to the entire global domain with the serial code. The horizontal arrays assigned to each local domain are expanded by one grid point in each horizontal dimension, creating a halo of ghost cells (Fig. 1). The two- and three-dimensional arrays in these ghost cells are exchanged between neighbor local domains using the MPI standard interface (http://www.mcs.anl.gov/research/projects/mpich2/).

 

Fig. 1. Example of data decomposition scheme for a global size of 14 × 17, local sizes of 6 × 7, and 9 processors. Crosses represent the boundaries of the global domain, shadow areas are the ghost cells (or local boundaries) and arrows indicate the communication between local domains to exchange variables at the ghost cells.

The sbPOM has implemented Parallel-NetCDF (http://trac.mcs.anl.gov/projects/parallel-netcdf), which provides high-performance parallel I/O while still maintains file-format compatibility with Unidata's NetCDF (http://www.unidata.ucar.edu/software/netcdf/). This makes the files space-efficient, self-describing and machine independent. NetCDF is also recognized by many graphics and post-processing utilities.

In order to assess the performance of sbPOM, we used the seamount test case (Ezer et al., 2002Mellor et al., 1998) which is made available with the code. It is a stratified Taylor column problem which simulates the flow across a seamount. The test case has 1026 × 770 global grid points and 31 vertical sigma levels. The simulation time is measured while varying the number of processors on a Blue Gene/L massively parallel supercomputer housed in the New York Center for Computational Sciences (http://www.newyorkccs.org/). The problem size for the test case is too large to run on one or two processors due to memory allocation. Simulations are therefore run with a number of processors ranging from 4 to 2048 (2K), and the efficiency is measured with respect to the four processors, t4/tnproc·(nproc/4), where tnproc is the simulation time when using nproc processors. The efficiency is very high even for 2K processors (∼0.8) (Fig. 2).

 

Fig. 2. Performance for the test case. (a) Time (seconds per simulation day) as a function of the number of processors. (b) Parallel efficiency relative to performance on four processors. The black line (in both panels) is efficiency equal to one.

模型元数据

{{htmlJSON.HowtoCite}}

Antoni Jordi, Dong-Ping Wang (2019). sbPOM (Stony Brook Parallel Ocean Model), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/61f6181c-a861-4f8c-ae2d-fed55d519b2e
{{htmlJSON.Copy}}

History

Last modifier
zhangshuo
Last modify time
2021-01-11
Modify times
View History

Contributor(s)

Initial contribute : 2019-12-28

{{htmlJSON.CoContributor}}

Authorship

:  
Institut Mediterrani d
:  
School of Marine and Atmospheric Sciences, Stony Brook University, USA
Is authorship not correct? Feed back

History

Last modifier
zhangshuo
Last modify time
2021-01-11
Modify times
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
XLkh2F7iAOeL