MADE (Modal Aerosol Dynamics model for Europe)

Modal Aerosol Dynamics model for Europe



Initial contribute: 2020-01-03


Is authorship not correct? Feed back


Application-focused categoriesNatural-perspectiveAtmospheric regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted fromAckermann, Ingmar J., Heinz Hass, M. Memmesheimer, A. Ebel, Francis S. Binkowski, and U. M. A. Shankar. "Modal aerosol dynamics model for Europe: Development and first applications." Atmospheric environment 32, no. 17 (1998): 2981-2999. 

The Modal Aerosol Dynamics model for Europe (MADE) has been developed as an extension to mesoscale chemistry transport models to allow a more detailed treatment of aerosol effects in these models. Due to the complexity of the atmospheric aerosol system an approach has been chosen which is, on the one hand, fast enough for this application and, on the other, provides sufficient information on the particle size distribution. In MADE, which is developed from the regional particulate model (RPM) the particle size distribution of the submicrometer aerosol is represented by two overlapping lognormal modes. The chemical composition is currently treated in the sulfate–nitrate–ammonium and water system. Sources for aerosol particles are modelled through nucleation and emission. Coagulation, condensation, transport and deposition are considered as processes modifying the aerosol population in the atmosphere. Aerosol dynamics calculations are performed on-line within the chemistry-transport model. Process studies with a one-dimensional version of the model system are used to investigate the relative importance of the individual aerosol dynamic processes and the important links between between the gas and aerosol phase as well as meteorological parameters. Results from a first three-dimensional application of the fully coupled system of MADE and the European Air Pollution Dispersion model system (EURAD) are presented, showing the suitability of MADE as an aerosol dynamics model even within complex air quality models. The application of the new aerosol model provides information on particle number, size and surface area in addition to the chemical concentration fields, which can be used to study a variety of aerosol-related air pollution issues in subsequent studies.



MADE team (2020). MADE (Modal Aerosol Dynamics model for Europe) , Model Item, OpenGMS,


Initial contribute : 2020-01-03



Is authorship not correct? Feed back

QR Code


{{'; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

编号 目的 修改内容 创建/修改日期 作者

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型

* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{}}

Page range:   {{articleUploading.pageRange}}

Link:   {{}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}