Opinion Dinamycs-Majority Rule

The Majority Rule model is a discrete model of opinion dynamics, proposed to describe public debates

Opinion Dinamycs



Initial contribute: 2019-05-09


Is authorship not correct? Feed back


Method-focused categoriesData-perspectiveGeostatistical analysis

Detailed Description

English {{currentDetailLanguage}} English

Majority Rule

The Majority Rule model is a discrete model of opinion dynamics, proposed to describe public debates [1].

Agents take discrete opinions ±1, just like the Voter model. At each time step a group of r agents is selected randomly and they all take the majority opinion within the group.

The group size can be fixed or taken at each time step from a specific distribution. If r is odd, then the majority opinion is always defined, however if r is even there could be tied situations. To select a prevailing opinion in this case, a bias in favour of one opinion (+1) is introduced.

This idea is inspired by the concept of social inertia [2].


During the simulation a node can experience the following statuses:

Name Code
Susceptible 0
Infected 1


Name Type Value Type Default Mandatory Description
q Model int in [0, V(G)]   True Number of neighbours

The initial infection status can be defined via:

  • percentage_infected: Model Parameter, float in [0, 1]
  • Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.


The following class methods are made available to configure, describe and execute the simulation:



Model Constructor

Parameters: graph – A networkx graph object

Set the initial model configuration

Parameters: configuration – a `ndlib.models.ModelConfig.Configuration`object

Reset the simulation setting the actual status to the initial configuration.



Describes the current model parameters (nodes, edges, status)

Returns: a dictionary containing for each parameter class the values specified during model configuration

Specify the statuses allowed by the model and their numeric code

Returns: a dictionary (status->code)

Execute Simulation


Execute a single model iteration

Returns: Iteration_id, Incremental node status (dictionary node->status)

Execute a bunch of model iterations

  • bunch_size – the number of iterations to execute
  • node_status – if the incremental node status has to be returned.

a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}


In the code below is shown an example of instantiation and execution of a Majority Rule model simulation on a random graph: we set the initial infected node set to the 10% of the overall population.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions.MajorityRuleModel as mr

# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

# Model selection
model = mr.MajorityRuleModel(g)
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)


# Simulation execution
iterations = model.iteration_bunch(200)
[1] S.Galam, “Minority opinion spreading in random geometry.” Eur.Phys. J. B, vol. 25, no. 4, pp. 403–406, 2002.
[2] R.Friedman and M.Friedman, “The Tyranny of the Status Quo.” Orlando, FL, USA: Harcourt Brace Company, 1984.



S.Galam (2019). Opinion Dinamycs-Majority Rule, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/0532105d-61fc-4764-ba74-264d3dd7e3a6


Initial contribute : 2019-05-09



Is authorship not correct? Feed back

QR Code


{{curRelation.author.join('; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

编号 目的 修改内容 创建/修改日期 作者

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型

* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}