Geary's C

A more commonly used spatial autocorrelation statistic

Global spatial autocorrelation



Initial contribute: 2021-06-15


Method-focused categoriesData-perspectiveGeostatistical analysis

Detailed Description

English {{currentDetailLanguage}} English

Like Moran's index, Geary's C is a common statistic used to measure spatial autocorrelation.Formula is as follows:

\( C=\frac{n-1}{2S_0}.\frac{\sum_{i=1}^n\sum_{j=1}^{n}w_{ij}(x_i-x_j)^2}{\sum_{i=1}^{n}(x_i-x_{average})^2} \)

\( x_i \)repesents the observed value at the ith spatial position.\( x_{average} \) repesents the mean of the whole region. W repesents the spatial weight matrix.

By contrast, Moran's I values range from -1 to 1, and Geary's C values range from 0 to 2.And  \( \sum_{j=1}^{n}w_{ij}(x_i-x_j)^2 \) is a direct representation of the observation of the i element and the nearby element, which is different from the Moran's I.

So when Geary's is less than 1, it indicates a positive spatial autocorrelation.

When Geary's is greater than 1, it indicates a negative spatial autocorrelation.

A value of 1 for Geary's indicates that there is no spatial autocorrelation.





Initial contribute : 2021-06-15



Last modifier
wu kai
Last modify time
Modify times

QR Code


{{'; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

编号 目的 修改内容 创建/修改日期 作者

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型

* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{}}

Page range:   {{articleUploading.pageRange}}

Link:   {{}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}