The 3D landscape evolution model (PIHMSed) that couples the processes of bedrock uplift, weathering, and regolith.

landscape evolutionregolith and soil transportevolving bedrocksoil-air interfaces





Initial contribute: 2019-07-08


Is authorship not correct? Feed back


Application-focused categoriesNatural-perspectiveLand regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://criticalzone.org/shale-hills/models/model_details/pihm-sediment-transport/

One of the objectives of the Shale Hills Critical Zone Observatory is to understand how landscape morphology arises from feedbacks among hydrological, hillslope, and fluvial processes.  Towards this end we are constructing a next-generation 3D landscape evolution model (PIHMSed) that couples the processes of bedrock uplift, weathering, and regolith transport.  The model is based upon PIHM, the Penn State Integrated Hydrologic Model, but also includes regolith and soil transport and evolving bedrock and soil-air interfaces.  The relevant conservation equations are discretized on a TIN (see figure) using the semi-discrete finite volume approach.
Among the processes causes regolith flux on hillslopes, tree throw is considered particularly important at Shale Hills.  We use the sine function suggested by Gabet, Reichman et al. (2003) to describe lateral regolith flux caused by tree throw: qtr = K sin α, where K is a coefficient that depends upon the frequency of tree-fall per unit area, width of the root plate, and pit depth, and taken at Shale Hills to be 4.8*10-3 m2/year. Streams are modeled as regions of the triangular mesh where the overland flow exceeds a user-supplied threshold.

Definition sketch of hillslope
Consider a hillslope where the variables are defined as z = ground surface elevation (m), e = bedrock interface elevation (m), h = regolith thickness in vertical (m), U = rock uplift rate (positive upwards) (m yr-1), E = the net surface erosion rate (negative for deposition) (m yr-1) on the surface by overland flow, and qx = the lateral volumetric regolith flux rate (positive in the x-dir) (m3 m-1 yr-1) entering the sides of the control volume.  We want to predict the evolution of the ground elevation and regolith thickness as functions of location (x) (units of meters) and time (t) (measured in years to be consistent with standard practice).   Let the regolith bulk density be σre and the rock bulk density be σro.
Then from conservation of mass:

Governing equations for PIHMSed.



Shale Hills Critical Zone Observatory (2019). PIHM-Sed, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/0eae66d1-4394-4a6a-87c4-b6ef7be39691


Initial contribute : 2019-07-08



Is authorship not correct? Feed back

QR Code


{{curRelation.author.join('; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

编号 目的 修改内容 创建/修改日期 作者

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型

* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}