Dogniaux and Lemoine model

Systematic studies were achieved for correlating the global radiation with the relative sunshine duration and for determining the variations of their coefficients on a geographical scale as function of the radiation climatic area.

Solar energyGlobal solar radiation model

true

Contributor(s)

Initial contribute: 2021-09-06

Authorship

Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesIntegrated-perspectiveGlobal scale

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: Dogniaux R ,  Lemoine M . Classification of Radiation Sites in Terms of Different Indices of Atmospheric Transparency[M]. Springer Netherlands, 1983.

https://www.sci-hub.ren/10.1007/978-94-009-7112-7_7

Systematic studies were achieved for correlating the global radiation with the relative sunshine duration and for determining the variations of their coefficients on a geographical scale as function of the radiation climatic area.

The sum A + B of the coefficients of the well - know Angstrom regression equation can be regarded as a parameter characterizing the average monthly or annual conditions of the transparency of the atmosphere at a given station. This index called "atmospheric transparency index" (ATl) is a linear function of the latitude and of the Linke turbidity factor.

A recapitulative table summarizes the different indices allowing to characterize a site. By an appropriate choice of them; it is possible to estimate with a reasonable accuracy the daily global irradiation of a site.

The aim of this study is, first, to investigate the possibility of extending the application of these equation to an extended area, by analyzing the variations of A and B as a function of latitude and atmospheric turbidity, and, in addition, to estimate the maximum values of the global radiation at the stations under clear sky conditions, by using an adequate turbidity factor well adapted to the local conditions of the site.

Dogniaux and Lemoine proposed the following correlation, where the regression coeffificients of the Angstrom–Prescott model seem to be as a function of the latitude of the site:

\( 𝐻/𝐻_0 =0.37022+[0.00506(𝑆/𝑆_0 )−0.00313]𝜑+0.32029(𝑆/𝑆_0 ) \)

模型元数据

{{htmlJSON.HowtoCite}}

R. DOGNIAUX, M. LEMOINE (2021). Dogniaux and Lemoine model, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/19b14151-f552-47ab-ae5f-e6a66105771d
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-09-06

{{htmlJSON.CoContributor}}

Authorship

Is authorship not correct? Feed back

History

Last modifier
lu zhang
Last modify time
2021-09-12
Modify times
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}