WRF-LES

The WRF with turbulence-resolving capability based on a large-eddy simulation (LES) approach.

turbulencelarge-eddy simulationWRF

true

Contributor(s)

Initial contribute: 2019-12-28

Authorship

Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveAtmospheric regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00308.1.xml 

The WRF with turbulence-resolving capability based on a large-eddy simulation (LES) approach is called WRF-LES. Through very fine (e.g., 50–100 m) grids it can simulate flows in idealized, canonical atmospheric boundary layers as well as realistic, evolving boundary layers driven by large-scale flows. WRF-LES has been verified in planetary boundary layer (PBL) simulations under a spectrum of stability conditions (Mirocha et al. 2010Munoz-Esparza et al. 20142015). To develop a multiscale capability that bridges the mesoscale–microscale gap, ongoing developments include a scale-aware PBL scheme for the 100-m to 1-km range, a turbulence-triggering LES approach, and a surface layer parameterization accounting for surface heterogeneity (see, e.g., Mirocha et al. 2014Aitken et al. 2014Xiao et al. 2015).

WRF-LES is probing the large-eddy scale (Moeng et al. 2007Mirocha et al. 2010) and aims to represent the scales, energies, and transport associated with atmospheric turbulence. It can simulate flows in hurricane boundary layers (Zhu 2008) and across wind farms (Y. Liu et al. 2011), and very high-resolution (e.g., Dx ∼50 m) simulations are being applied to explore both idealized settings (Kirkil et al. 2012) and real-data cases (Talbot et al. 2012). Recent work has significantly improved WRF for large-eddy applications by changing the model’s prognostic formulation of potential temperature (Xiao et al. 2015), with the benefits of avoiding spurious simulated motions and reducing the computational cost of LES runs. Pushing WRF to explore the microscale is helping to shape one of the model’s future roles in atmospheric modeling: addressing scales out of the practical reach of global models while spanning domains beyond which classical large-eddy modeling or direct numerical simulation can be afforded computationally.

模型元数据

{{htmlJSON.HowtoCite}}

{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2019-12-28

{{htmlJSON.CoContributor}}

Authorship

Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}