公园中游客行为的Markov模型

公园中游客行为的Markov模型

  69

Contributor(s)

Initial contribute: 2018-12-04

Authorship

Affiliation:  
岳天祥编著
Email:  
yue@lreis.ac.cn
Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesProcess-perspectiveHuman-activity calculation

Model Description

Chinese {{currentDetailLanguage}} Chinese

公园中游客行为的Markov模型

模型的目的是要计算在公园的每一个区域内游客的平均数,微分方程为:

式中,是来公园的游客的平均总数;是在区域的游客平均数;s是每单位时间进入公园的游客平均数;是一个旅客从公园外面进入区域的概率,对于所有入口,这个概率是指通过入口进入的概率和从入口移动到区域的概率的总和;是一个游客从区域转移到公园外面的概率;是每单位时间离开区域的游客的平均数;是游客每单位时间离开区域的速率;是一个游客从区域移动到区域的概率。

 

参考文献

Bertuglia C S, TadeR:国家公园利用的随机模型. Ecological Modelling198215

How to Cite

《资源环境数学模型手册》 (2018). 公园中游客行为的Markov模型, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/3cab4cd6-ae61-402f-b62f-ecf5a41bd622
Copy

History

Last modifier : 
Mingyuan Li
Last modify time : 
2020-11-07
Modify times : 
View History

QR Code

Contributor

Initial contribute: 2018-12-04

Co-contributor(s)

Authorship

Affiliation:  
岳天祥编著
Email:  
yue@lreis.ac.cn
Homepage:  
View
Is authorship not correct? Feedback

History

Last modifier : 
Mingyuan Li
Last modify time : 
2020-11-07
Modify times : 
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm