CXTFIT

CXTFIT may be used to solve the inverse problem by fitting mathematical solutions of theoretical transport models, based upon the convection-dispersion equation (CDE), to experimental results.

transportCDEconvection-dispersion equation

true

Contributor(s)

Initial contribute: 2020-01-02

Authorship

:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/model/cxtfit-model/ 

Successful predictions of the fate and transport of solutes in the subsurface hinges on the availability of accurate transport parameters. We modified and updated the CXTFIT (version 1.0) code of Parker and van Genuchten [1984] for estimating solute transport parameters using a nonlinear least-squares parameter optimization method. The program may be used to solve the inverse problem by fitting mathematical solutions of theoretical transport models, based upon the convection-dispersion equation (CDE), to experimental results. This approach allows parameters in the transport models to be quantified. The program may also be used to solve the direct or forward problem to determine the concentration as a function of time and/or position. Three different one-dimensional transport models are included: the conventional CDE; the chemical and physical nonequilibrium CDE; and  a stochastic stream tube model based upon the local-scale CDE with equilibrium or nonequilibrium adsorption. The two independent stochastic parameters in the stream-tube model are the pore-water velocity, v, and either the dispersion coefficient, D, the distribution coefficient, Kd, or the nonequilibrium rate parameter, alpha. These pairs of stochastic parameters were described with a bivariate lognormal probability density function (pdf). Examples are given on how transport parameters may be determined from laboratory or field tracer experiments for several types of initial and boundary conditions, as well as different zero-order production profiles.
The program comes with a user manual giving a detailed description of the computer program, including the subroutines used to evaluate the analytical solutions for optimizing model parameters. Input and output files for all major problems are also included in the manual.

References

Toride, N., F. J. Leij, and M. Th. van Genuchten. 1995. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Version 2.0. Research Report No. 137, U.S. Salinity Laboratory, USDA, ARS, Riverside, California.

J. C. Parker, and M. Th. van Genuchten. 1984. Determining transport parameters from laboratory and field tracer experiments. Version 1.0. Bulletin 84-3, Virginia Agricultural Station, Blacksburg, Virginia.

 

模型元数据

{{htmlJSON.HowtoCite}}

USDA-ARS U.S. Salinity Laboratory (2020). CXTFIT, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/53466cc0-5282-471c-91d6-f2dc4bb8643c
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2020-01-02

{{htmlJSON.CoContributor}}

Authorship

:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}