TwoPhaseEulerSedFoam

A four-way coupled two-phase Eulerian model for sediment transport. A multi-dimensional numerical model for sediment transport based on the two-phase flow formulation is developed. With closures of particle stresses and fluid-particle interaction, the model is able to resolve processes in the concentrated region of sediment transport and hence does not require conventional bedload/suspended load assumptions. The numerical model is developed in three spatial dimensions. However, in this version, the model is only validated for Reynolds-averaged two-dimensional vertical (2DV) formulation (with the k − epsilon closure for carrier flow turbulence) for sheet flow in steady and oscillatory flows. This numerical model is developed via the open-source CFD library of solvers, OpenFOAM and the new solver is called twoPhaseEulerSedFoam.

sediment transporttwo-phase modelmulti-dimensional

true

Contributor(s)

Initial contribute: 2021-09-14

Authorship

:  
Ocean Engineering Lab, University of Delaware
:  
zcheng@udel.edu
:  
Ocean Engineering Lab, University of Delaware
:  
thsu@udel.edu
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions
Application-focused categoriesNatural-perspectiveOcean regions

{{htmlJSON.HowtoCite}}

Zhen Cheng, Tian-Jian Hsu (2021). TwoPhaseEulerSedFoam, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/54758fdd-9831-4ec4-8b0b-95b464dfc426
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-09-14

{{htmlJSON.CoContributor}}

Authorship

:  
Ocean Engineering Lab, University of Delaware
:  
zcheng@udel.edu
:  
Ocean Engineering Lab, University of Delaware
:  
thsu@udel.edu
Is authorship not correct? Feed back

History

Last modifier
Yihan Zhang
Last modify time
2021-09-18
Modify times
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}