Thermosphere Ionosphere Electrodynamics General Circulation Model

The NCAR Thermosphere-Ionosphere- Electrodynamics General Circulation Model (TIE-GCM) is a comprehensive, first-principles, three-dimensional, non-linear representation of the coupled thermosphere and ionosphere system that includes a self-consistent solution of the low-latitude electric field.

IONOSPHERE/THERMOSPHERE

true

Contributor(s)

Initial contribute: 2020-07-02

Authorship

:  
High Altitude Observatory, National Center for Atmospheric Research
:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveSpace-earth regions
Method-focused categoriesProcess-perspectivePhysical process calculation

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=TIE-GCM

Model Description
The NCAR Thermosphere-Ionosphere- Electrodynamics General Circulation Model (TIE-GCM) is a comprehensive, first-principles, three-dimensional, non-linear representation of the coupled thermosphere and ionosphere system that includes a self-consistent solution of the low-latitude electric field. The model solves the three-dimensional momentum, energy and continuity equations for neutral and ion species at each time step, using a semi-implicit, fourth-order, centered finite difference scheme, on each pressure surface in a staggered vertical grid. It has 29 constant-pressure levels in the vertical, extending from approximately 97 km to 500 km in intervals of one-half scale height, and a 5° x 5° latitude-longitude grid, in its base configuration. The time step is 120 s.

Hydrostatic equilibrium, constant gravity, steady-state ion and electron energy equations, and incompressibility on a constant pressure surface, are assumed. Ion velocities are derived from the potential field created by combining the imposed magnetospheric potential with the low-latitude dynamo potential, and then calculating ion velocities from ExB drifts, rather than solving the ion momentum equations explicitly. Some minor species are not currently included in the model, including hydrogen and helium and their ions, and argon. Several parameterizations are used in the TIE-GCM: an empirical model is used to specify photoelectron heating; the production of secondary electrons is included using an empirical model derived from two-stream calculations, the effects of mixing by gravity waves are included using an eddy diffusion formulation; CO2 is included by specifying a lower boundary condition and assuming that it is in diffusive equilibrium. The upper boundary conditions for electron heat transfer and electron number flux are empirical formulations. At the lower boundary, atmospheric tides are specified using the Global Scale Wave Model (GSWM).

Model Input

    • Solar EUV inputs:
      F107 (current daily F10.7 solar index) and F107A (81-day center-averaged F10.7 solar index)

 

    • Particle precipitation:
      Hemispheric Power in GW, obtained from 3-hour Kp index

 

    • Ionospheric electric fields at high latitudes:
      Provided by Heelis model and Weimer model.

 

    • Inputs for Heelis model:
      Cross polar cap potential in kV, obtained from 3-hour Kp index Hemispheric Power in GW, obtained from 3-hour Kp index Optional (not implemented): y-component of the interplanetary magnetic field (By) in nT

 

    • Inputs for Weimer model: 
      Interplanetary magnetic field, By and Bz, in nT Solar wind density and speed, ρ and v, in cm-3 and km s-1

 

    • Inputs for lower boundary: 
      Diurnal and semi-diurnal migrating tides, specified by the GSWM

Model Output

      • Primary timed-dependent output fields, specified in latitude, longitude, and pressure level:
        • Geopotential height: Height of pressure surfaces (cm)
        • Temperatures: Neutral, ion, electron (K)
        • Neutral winds: zonal, meridional, (cm s-1), vertical (s-1)
        • Composition: O, O2, NO, N(4S), N(2D) (mass mixing ratios - dimensionless)
        • Ion and electron densities: O+, O2+, Ne (cm-3), (NO+ is calculated from Ne - (O+ + O2+))
        • Electric potential: (V)
      • Other fields are available as secondary histories which can be set as needed.

References and relevant publications

      • Roble, R. G., R. E., Dickinson and E. C. Ridley, Seasonal and solar-cycle variations of zonal mean circulation in the thermosphere, J. Geophys. Res., 82, 5493-5504, 1977.
      • Dickinson, R. E., E. C. Ridley and R. G. Roble, A three-dimensional general circulation model of the thermosphere, J. Geophys. Res., 86, 1499-1512, 1981.
      • Roble, R. G., R.E. Dickinson, and E. C. Ridley, Global circulation and temperature structure of the thermosphere with high-latitude plasma convection, J. Geophys, Res., 87, 1599-1614, 1982.
      • Dickinson, R. E., E. C. Ridley and R. G. Roble, Thermospheric general circulation with coupled dynamics and composition, J. Atmos. Sci., 41, 205-219, 1984.
      • Roble, R. G., E. C. Ridley and R. E. Dickinson, On the global mean structure of the thermosphere, J. Geophys. Res., 92, 8745-8758, 1987.
      • Roble, R. G., and E. C. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM), Annales Geophys., 5A, 369-382, 1987.
      • Roble, R. G., E. C. Ridley, A. D. Richmond and R. E. Dickinson, A coupled thermosphere / ionosphere general circulation model, Geophys. Res. Lett., 15, 1325-1328, 1988.
      • Richmond, A. D.., E. C. Ridley, and R. G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 6, 601-604, 1992.
      • Roble, R. G., Energetics of the mesosphere and thermosphere, AGU, Geophysical Monographs, eds. R. M. Johnson and T. L. Killeen, 87, 1-22, 1995.
      • Richmond, A. D., Ionospheric Electrodynamics Using Magnetic Apex Coordinates, J. Geomag. Geoelectr., 47, 191-212, 1995.
      • Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang (1999), GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813-6827.
      • Wang, W., T. L. Killeen, A. G. Burns, and R. G. Roble, A high-resolution, three-dimensional, time dependent, nested grid model of the coupled thermosphere-ionosphere, J. Atmos. Sol.-Terr. Phys, 61, 385-397, 1999.
      • Wiltberger, M., W. Wang, A. Burns, S. Solomon, J. G. Lyon, and C. C. Goodrich, Initial results from the coupled magnetosphere ionosphere thermosphere model: magnetospheric and ionospheric responses, J. Atmos. Sol.-Terr. Phys., 66, 1411-1444, doi:10.1016/j.jastp.2004.03.026, 2004.
      • Wang, W., M. Wiltberger, A. G. Burns, S. Solomon, T. L. Killeen, N. Maruyama, and J. Lyon, Initial results from the CISM coupled magnetosphere-ionosphere-thermosphere (CMIT) model: thermosphere ionosphere responses, J. Atmos. Sol.-Terr. Phys., 66, 1425-1442, doi:10.1016/j.jastp.2004.04.008, 2004.
      • Solomon, S. C., and L. Qian, Solar extreme-ultraviolet irradiance for general circulation models, J. Geophys. Res., 110, A10306, doi:10.1029/2005JA011160, 2005.
      • Qian, L., S. C. Solomon, and T. J. Kane, Seasonal variation of thermospheric density and composition, J. Geophys. Res., 114, A01312, doi:10.1029/2008JA013643, 2009.

Relevant links

CCMC Contact(s)
Katherine Garcia-Sage, Jia.yue
301-286-3651, 301-286-1648

Developer Contact(s)
Ben Foster 
303-497-1595

Stan Solomon
303-497-2179

模型元数据

{{htmlJSON.HowtoCite}}

R. G. Roble et al. (2020). Thermosphere Ionosphere Electrodynamics General Circulation Model, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/5725354c-34d5-49f8-9c03-100556a00235
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2020-07-02

{{htmlJSON.CoContributor}}

Authorship

:  
High Altitude Observatory, National Center for Atmospheric Research
:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}