人工神经网络模型

人工神经网络模型

true

Contributor(s)

Initial contribute: 2018-12-04

Authorship

:  
岳天祥编著
:  
yue@lreis.ac.cn
:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesData-perspectiveIntelligent computation analysis

Detailed Description

Chinese {{currentDetailLanguage}} Chinese

人工神经网络模型

 

BP模型的特点是信号由输入层单向传输到输出层,同一层神经元之间不传递信息,每个神经元与邻层所有神经元相连,连结权重用表示,各神经元的作用函数为Sigmoid函数。设输入层有p节点,输出层有q节点,k-1层的任意节点用i表示,k层的任意节点用j表示,k+1层的任意节点用l表示,则:

式中,k-1层节点i的输出;k层节点j的输入;k层节点j的输出。

    设训练样本对为(XYe)Xp维向量,加到输入层;Yeq维向量,对应于期望的输出;网络的实际输出也是q维向量。网络在接受样本对的训练过程中,采用BP法,将输出值与实际期望值进行比较,并视其误差的方向与大小,反向调整各层节点的权值,使网络的输出值逐步逼近实际期望值,反复学习,直达到理想的误差精度为止。

参考文献

洪伟,吴承祯,何东进:基于人工神经网络的森林资源管理模型研究。自然资源学报,1998,13(1)

模型元数据

{{htmlJSON.HowtoCite}}

《资源环境数学模型手册》 (2018). 人工神经网络模型, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/58f3f21a-f472-48a6-b35f-5d9e27133d4a
{{htmlJSON.Copy}}

History

Last modifier
zhangshuo
Last modify time
2021-01-07
Modify times
View History

Contributor(s)

Initial contribute : 2018-12-04

{{htmlJSON.CoContributor}}

Authorship

:  
岳天祥编著
:  
yue@lreis.ac.cn
:  
View
Is authorship not correct? Feed back

History

Last modifier
zhangshuo
Last modify time
2021-01-07
Modify times
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}