SW4

SW4 implements substantial capabilities for 3-D seismic modeling, with a free surface condition on the top boundary, absorbing super-grid conditions on the far-field boundaries, and an arbitrary number of point force and/or point moment tensor source terms. Each source time function can have one of many predefined analytical time dependencies, or interpolate a user defined discrete time series.

true

Contributor(s)

Initial contribute: 2019-07-02

Classification(s)

Application-focused categoriesNatural-perspectiveSolid-earth regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://geodynamics.org/cig/software/sw4/ 

SW4 supports a fully 3-D heterogeneous material model that can be specified in several formats. It uses a curvilinear mesh near the free surface to honor the free surface boundary condition on a realistic topography. The curvilinear mesh is automatically generated from the description of the topography. To make SW4 more computationally efficient, the seismic wave equations are discretized on a Cartesian mesh below the curvilinear grid. The Cartesian mesh, which extends to the bottom of the computational domain, is also generated automatically.

SW4 solves the seismic wave equations in Cartesian coordinates. It is therefore appropriate for local and regional simulations, where the curvature of the earth can be neglected. Locations can be specified directly in Cartesian coordinates, or through geographic (latitude, longitude) coordinates. SW4 can be built to use the Proj.4 library for calculating the mapping between geographic and Cartesian coordinates, or use an approximate spheroidal mapping. SW4 can output synthetic seismograms in an ASCII text format, or in the SAC format [7]. It can also present simulation information as GMT scripts, which can be used to create annotated maps. SW4 can output the solution, derived quantities of the solution, as well as the material model along 2-D grid planes. Furthermore, SW4 can output the 3-D volumetric solution, or material model, in a binary file format.

Visco-elastic behavior can be important when modeling the dissipative nature of realistic materials, especially for higher frequencies. SW4 uses the rheological model of standard linear solid (SLS) elements, coupled in parallel. The coefficients in each SLS are determined such that the resulting quality factors Qp and Qs, for the attenuation of P- and S-waves, become approximately constant as function of frequency. These quality factors can vary from grid point to grid point over the computational domain and are read in the same way as the elastic properties of the material model.

While most of the SW4 code is written in C++, almost all numerical computations are implemented in Fortan-77. SW4 uses a distributed memory programming model, implemented with the C-bindings of the MPI library. Compatible versions of the C++ and Fortran-77 compilers as well as the MPI library must be available to build the code. We have built and tested SW4 on a variety of machines, ranging from single processor laptops to large super-computers with O(100,000) cores.

模型元数据

{{htmlJSON.HowtoCite}}

{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2019-07-02

{{htmlJSON.CoContributor}}

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}