ComputeDInf

DEM分类/基本地形参数

DEM Characteristics

Contributor(s)

Initial contribute: 2018-01-02

Classification(s)

Method-focused categoriesData-perspectiveGeoinformation analysis

Detailed Description

English {{currentDetailLanguage}} English

Basic Information

A digital elevation model (DEM) is a digital model or 3D representation of a terrain's surface — commonly for a planet (including Earth), moon, or asteroid — created from terrain elevation data.There is no universal usage of the terms digital elevation model (DEM), digital terrain model (DTM) and digital surface model (DSM) in scientific literature. In most cases the term digital surface model represents the earth's surface and includes all objects on it. In contrast to a DSM, the digital terrain model (DTM) represents the bare ground surface without any objects like plants and buildings.DEM is often used as a generic term for DSMs and DTMs, only representing height information without any further definition about the surface. Other definitions equalise the terms DEM and DTM, or define the DEM as a subset of the DTM, which also represents other morphological elements. There are also definitions which equalise the terms DEM and DSM. On the Web definitions can be found which define DEM as a regularly spaced GRID and a DTM as a three-dimensional model (TIN). Most of the data providers (USGS, ERSDAC, CGIAR, Spot Image) use the term DEM as a generic term for DSMs and DTMs. All datasets which are captured with satellites, airplanes or other flying platforms are originally DSMs (like SRTM or the ASTER GDEM). It is possible to compute a DTM from high resolution DSM datasets with complex algorithms (Li et al., 2005).

A DEM can be represented as a raster (a grid of squares, also known as a heightmap when representing elevation) or as a vector-based triangular irregular network (TIN). The TIN DEM dataset is also referred to as a primary (measured) DEM, whereas the Raster DEM is referred to as a secondary (computed) DEM. The DEM could be acquired through techniques such as photogrammetry, lidar, IfSAR, land surveying, etc. DEMs are commonly built using data collected using remote sensing techniques, but they may also be built from land surveying. DEMs are used often in geographic information systems, and are the most common basis for digitally produced relief maps. While a DSM may be useful for landscape modeling, city modeling and visualization applications, a DTM is often required for flood or drainage modeling, land-use studies, geological applications, and other applications.

The quality of a DEM is a measure of how accurate elevation is at each pixel (absolute accuracy) and how accurately is the morphology presented (relative accuracy). Several factors play an important role for quality of DEM-derived products:

  • terrain roughness;
  • sampling density (elevation data collection method);
  • grid resolution or pixelsize;
  • interpolationalgorithm;
  • vertical resolution;
  • terrain analysis algorithm;
  • Reference 3D products include quality masks that give information on the coastline, lake, snow, clouds, correlation etc.

 

Methods for obtaining elevation data used to create DEMs

  • Lidar
  • Stereo photogrammetryfrom aerial surveys
  • Structure from motion/ Multi-view stereo applied to aerial photography[13]
  • Block adjustment from optical satellite imagery
  • Interferometry from radar data
  • Real Time KinematicGPS
  • Topographic maps
  • Theodoliteor total station
  • Doppler radar
  • Focus variation
  • Inertial surveys
  • Surveying and mapping drones
  • Range imaging

 Digital Elevation Model - Red Rocks Amphitheater, Colorado obtained using an UAV (DroneMapper)

Surfaces represented by a Digital Surface Model include buildings and other objects. Digital Terrain Models represent the bare ground.

 

模型元数据

{{htmlJSON.HowtoCite}}

NNU_Group (2018). ComputeDInf, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/871ddc90-8530-47a9-992c-53191dd04993
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2018-01-02

{{htmlJSON.CoContributor}}

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
BESmPYpZa.8Z