大气影响校正模型

大气影响校正模型

true

Contributor(s)

Initial contribute: 2018-12-04

Authorship

:  
岳天祥编著
:  
yue@lreis.ac.cn
:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesData-perspectiveRemote sensing analysis

Detailed Description

Chinese {{currentDetailLanguage}} Chinese

大气影响校正模型

(1)厚密暗植被方法(DDV);

DDV方法假设在一个场点存在厚密暗植被,对蓝光(TM1)及红光(TM3)其可被处理为暗对象,则可得TM7的表面反射系数与TM1TM3的下述关系:

  

式中,ρ代表表面反射系数;下标代表TM的波段。

(2) 路径辐射方法(PARA)

Wen(1999)PARA法从DDV发展而来,对LandsatTM图像,存在下面的关系:

  

式中,分别是线性关系的斜率;分别是由于路径辐射而来的表观反射系数。

参考文献

Song C, Woodcock C E, Seto K C et al:利用Landsat TM数据进行分类和变化探测――何时及如何校正大气影响。 RemoteSensing of Environment 2001, 75

{{htmlJSON.HowtoCite}}

《资源环境数学模型手册》 (2018). 大气影响校正模型, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/876aa865-f67f-434e-b117-d70137fad0b8
{{htmlJSON.Copy}}

History

Last modifier
zhangshuo
Last modify time
2020-12-17
Modify times

Contributor(s)

Initial contribute : 2018-12-04

{{htmlJSON.CoContributor}}

Authorship

:  
岳天祥编著
:  
yue@lreis.ac.cn
:  
View
Is authorship not correct? Feed back

History

Last modifier
zhangshuo
Last modify time
2020-12-17
Modify times

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}