MultiMod

The energy system and resource market model "MultiMod" is a large-scale representation of the supply and demand of fossil fuels and renewable energy sources.

energymarketlarge-scalesupply and demandfossil fuelsrenewable energy

true

Contributor(s)

Initial contribute: 2019-10-18

Authorship

:  
View
:  
Johns Hopkins University, Baltimore, USA
:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesHuman-perspectiveEconomic activities

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://www.diw.de/de/diw_01.c.599753.de/modelle.html#ab_599749 

The energy system and resource market model "MultiMod" is a large-scale representation of the supply and demand of fossil fuels and renewable energy sources. It captures in a unified framework important energy market features such as endogenous substitution between fuels, infrastructure constraints and endogenous investment, as well as market power by producers of fossil fuels.

"This model was developed within the BMBF-project RESOURCES, in collaboration with NTNU Trondheim. It is updated in the EU Horizon 2020 project SET-Nav. The mathematical formulation of the MultiMod model is a dynamic Generalized Nash Equilibrium (GNE) derived from individual players' profit maximisation problems. The formulation is generic and flexible, so that the supply chain of any number of fossil and renewable fuels can be modelled. The framework includes seasonality and allows for a detailed infrastructure representation and a comprehensive transformation sector (power generation, refinery sector). Investment in infrastructure (transportation, seasonal storage, transformation) is determined endogenously in the model according to the respective player’s inter-temporal optimisation problem. Furthermore, substitution between different energy carriers on the final demand side is endogenous. By formulating the model as an equilibrium problem with different player types based on non-cooperative game theory, the model can incorporate Cournot market power by individual suppliers as well as distinct discount rates by various players concerning their investment. The current framework is an open-loop perfect foresight model. A stochastic version of the model is under development at NTNU Trondheim. This will allow for consideration of uncertainty and distinct risk profiles for individual players along the supply chain, including investment by consumers in energy efficiency.

The model is formulated and solved as a Mixed Complementarity Problem (MCP) and implemented in GAMS, using MS Access and MS Excel for data processing and output reports. Initially, a database representing the global energy system was compiled and used for scenario analysis (Huppmann & Egging, 2014). Other datasets or variations of the initial data base are have later been developed within specific research projects:

模型元数据

{{htmlJSON.HowtoCite}}

NTNU Trondheim, Norwegen NTNU, Sauleh Siddiqui (2019). MultiMod, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/94dd0dce-fc5e-4289-9622-7ec804ca4e03
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2019-10-18

{{htmlJSON.CoContributor}}

Authorship

:  
View
:  
Johns Hopkins University, Baltimore, USA
:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}