Jiangsu Coastal Storm Surge Mathematical Model

This model uses Adcirc model to simulate the storm surge along the coast of Jiangsu province.

Jiangsu ProvinceStorm Surge
  2930

Contributor

contributed at 2018-08-13

Authorship

Affiliation:  
南京水利科学研究院
Email:  
jszhang@nhri.cn
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions

Model Description

English {{currentDetailLanguage}} English

This model uses Adcirc model to simulate the storm surge along the coast of Jiangsu province.

Introduction[1]

ADCIRC is a highly developed computer program for solving the equations of motion for a moving fluid on a rotating earth. These equations have been formulated using the traditional hydrostatic pressure and Boussinesq approximations and have been discretized in space using the finite element (FE) method and in time using the finite difference (FD) method.

ADCIRC can be run either as a two-dimensional depth integrated (2DDI) model or as a three-dimensional (3D) model. In either case, elevation is obtained from the solution of the depth-integrated continuity equation in Generalized Wave-Continuity Equation (GWCE) form. Velocity is obtained from the solution of either the 2DDI or 3D momentum equations. All nonlinear terms have been retained in these equations.

ADCIRC can be run using either a Cartesian or a spherical coordinate system.

The GWCE can be solved using either a consistent or a lumped mass matrix (via a compiler flag) and an implicit or explicit time stepping scheme (via variable time weighting coefficients). If a lumped, fully explicit formulation is specified, no matrix solver is necessary. In all other cases the GWCE is solved using the Jacobi preconditioned iterative solver from the ITPACKV 2D package.

Data Descriptions

Input File Descriptions

Output File Descriptions

 

Reference:

[1]http://adcirc.org

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

张金善 (2018). Jiangsu Coastal Storm Surge Mathematical Model, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/ac980fc8-bf6a-4753-905f-d517fb9dd439
Copy

History

Last modifier : 
zhangshuo
Last modify time : 
2021-01-11
Modify times : 
View History

QR Code

Contributor(s)

Initial contribute: 2018-08-13

Authorship

Affiliation:  
南京水利科学研究院
Email:  
jszhang@nhri.cn
Is authorship not correct? Feedback

History

Last modifier : 
zhangshuo
Last modify time : 
2021-01-11
Modify times : 
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm