2-D Numerical Simulations on Formation and Descent of Stagnant Slabs

A numerical model of subducted slabs in the convecting mantle using 2-D model in spherical annulus, in order to study what mechanisms control the behaviors of subducted slabs in the mantle at various depths, such as the formation of stagnant slabs in the MTZ and the course of its avalanche into the lower mantle. (According to Mana Tsuchida and Masanori Kameyama)

Seismic tomographynumerical model

Contributor(s)

Initial contribute: 2019-06-24

Authorship

:  
Geodynamics Research Center, Ehime University, Matsuyama, Japan
:  
tsuchida@sci.ehime-u.ac.jp
:  
Geodynamics Research Center, Ehime University, Matsuyama, Japan
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveSolid-earth regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://doi.org/10.3389/feart.2020.00117

Authors consider thermal convection of mantle materials which is driven by a subducting and retreating motion of a cold slab in one eighth (azimuth θmin ≤ θ ≤ θmax where θmax-θmin=45∘) of a two-dimensional spherical annulus whose outer and inner radii are rmax = 6, 400 km and rmin = 4, 400 km, respectively. Authors take into account the effects of the phase transition from olivine to wadsleyite at around 410 km depth and that from ringwoodite to bridgmanite and ferro-periclase at around 660 km depth. The density contrasts associated with these phase transitions are taken to be 8.3 and 7.8%, respectively (Dziewonski and Anderson, 1981). The Clapeyron slope of the phase transition at 410 km depth is taken to be γ410 = +3 MPa/K, while that of 660 km depth γ660 is varied from −3 MPa/K or −1 MPa/K, based on the result of laboratory experiments (e.g., Ito and Takahashi, 1989Katsura et al., 2003Fei et al., 2004). The meanings and values of parameters used in this study are given in Table 1.

模型元数据

{{htmlJSON.HowtoCite}}

Mana Tsuchida, Masanori Kameyama (2019). 2-D Numerical Simulations on Formation and Descent of Stagnant Slabs, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/affd7176-8b7e-4106-99ad-162ed811e7a5
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2019-06-24

{{htmlJSON.CoContributor}}

Authorship

:  
Geodynamics Research Center, Ehime University, Matsuyama, Japan
:  
tsuchida@sci.ehime-u.ac.jp
:  
Geodynamics Research Center, Ehime University, Matsuyama, Japan
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
SWu6SSmUrBIQ