SLEPIAN Bravo

Linear inverse problems using spherical harmonics and spherical Slepian functions

Toolbox

true

Contributor(s)

Initial contribute: 2021-09-10

Authorship

:  
Princeton University
:  
fjsimons@gmail.com
:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions
Application-focused categoriesIntegrated-perspectiveGlobal scale
Application-focused categoriesIntegrated-perspectiveRegional scale

Detailed Description

English {{currentDetailLanguage}} English

Quote from: https://ui.adsabs.harvard.edu/abs/2006GeoJI.166.1039S/abstract

  The estimation of potential fields such as the gravitational or magnetic potential at the surface of a spherical planet from noisy observations taken at an altitude over an incomplete portion of the globe is a classic example of an ill-posed inverse problem. We show that this potential-field estimation problem has deep-seated connections to Slepian's spatiospectral localization problem which seeks bandlimited spherical functions whose energy is optimally concentrated in some closed portion of the unit sphere. This allows us to formulate an alternative solution to the traditional damped least-squares spherical harmonic approach in geodesy, whereby the source field is now expanded in a truncated Slepian function basis set. We discuss the relative performance of both methods with regard to standard statistical measures such as bias, variance and mean squared error, and pay special attention to the algorithmic efficiency of computing the Slepian functions on the region complementary to the axisymmetric polar gap characteristic of satellite surveys. The ease, speed, and accuracy of our method make the use of spherical Slepian functions in earth and planetary geodesy practical.

模型元数据

{{htmlJSON.HowtoCite}}

Frederik Simons, Harig (2021). SLEPIAN Bravo, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/b1045a15-409b-4b96-8b5c-d4d1f8b6eabc
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-09-10

{{htmlJSON.CoContributor}}

Authorship

:  
Princeton University
:  
fjsimons@gmail.com
:  
View
Is authorship not correct? Feed back

History

Last modifier
HaoCheng Wang
Last modify time
2021-09-18
Modify times

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}