环境因子的多元回归分析模型

环境因子的多元回归分析模型

  388

Contributor(s)

Initial contribute: 2018-12-04

Authorship

Affiliation:  
岳天祥编著
Email:  
yue@lreis.ac.cn
Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesData-perspectiveRemote sensing analysis

Model Description

Chinese {{currentDetailLanguage}} Chinese

环境因子的多元回归分析模型

 

(1)    多元线性回归模型:

 

 

式中,是因变量,反映环境质量的单位面积主食竹标准株的数量;为偏回归系数;为常数项,其他项均为待估计的参数;为自变量,可从航空像片上判读的环境因子的赋值;为随机误差。

 

(2)    显著性检验模型:

 

 

式中,为剩余离差平方和;为回归离差平方和。

 

(3)    复相关系数模型:

 

 

式中,为总的离差平方和;同上。

 

(4)    剩余标准差模型:

 

 

参考文献:

李芝喜:利用遥感技术进行大熊猫栖息环境的调查研究。环境遥感,1990,52

How to Cite

《资源环境数学模型手册》 (2018). 环境因子的多元回归分析模型, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/b7213d84-5adf-4991-aca2-e99fe555b633
Copy

History

Last modifier : 
Anxun Ren
Last modify time : 
2020-11-11
Modify times : 
View History

QR Code

Contributor

Initial contribute: 2018-12-04

Co-contributor(s)

Authorship

Affiliation:  
岳天祥编著
Email:  
yue@lreis.ac.cn
Homepage:  
View
Is authorship not correct? Feedback

History

Last modifier : 
Anxun Ren
Last modify time : 
2020-11-11
Modify times : 
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm