GIPL

GIPL(Geophysical Institute Permafrost Laboratory) is an implicit finite difference one-dimensional heat flow numerical model.

heat flowpermafrost

Alias

Geophysical Institute Permafrost Laboratory

Contributor(s)

Initial contribute: 2021-09-07

Authorship

:  
University of Colorado
:  
Elchin.Jafarov@colorado.edu
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions
Application-focused categoriesNatural-perspectiveFrozen regions
Application-focused categoriesIntegrated-perspectiveGlobal scale

Detailed Description

English {{currentDetailLanguage}} English

GIPL(Geophysical Institute Permafrost Laboratory) is an implicit finite difference one-dimensional heat flow numerical model. The GIPL model uses the effect of snow layer and subsurface soil thermal properties to simulate ground temperatures and active layer thickness (ALT) by solving the 1D heat diffusion equation with phase change. The phase change associated with freezing and thawing process occurs within a range of temperatures below 0 degree centigrade, and is represented by the unfrozen water curve (Romanovsky and Osterkamp 2000). The model employs finite difference numerical scheme over a specified domain. The soil column is divided into several layers, each with distinct thermo-physical properties. The GIPL model has been successfully used to map permafrost dynamics in Alaska and validated using ground temperature measurements in shallow boreholes across Alaska (Nicolsky et al. 2009, Jafarov et al. 2012, Jafarov et al. 2013, Jafarov et al. 2014).

GIPL(Geophysical Institute Permafrost Laboratory) is an implicit finite difference one-dimensional heat flow numerical model.The model uses fine vertical resolution grid which preserves the latent-heat effects in the phase transition zone, even under conditions of rapid or abrupt changes in the temperature fields. It includes upper boundary condition (usually air temperature), constant geothermal heat flux at the lower boundary (typically from 500 to 1000 m) and initial temperature distribution with depth. The other inputs are precipitation, prescribed water content and thermal properties of the multilayered soil column. As an output the model produces temperature distributions at different depths, active layer thickness and calculates time of freeze up. The results include temperatures at different depths and active layer thickness, freeze-up days.

The GIPL model uses the effect of snow layer and subsurface soil thermal properties to simulate ground temperatures and active layer thickness (ALT) by solving the 1D heat diffusion equation with phase change. The phase change associated with freezing and thawing processes occurs within a range of temperatures below 0C, and is represented by the unfrozen water curve (Romanovsky and Osterkamp2000). The model employs a finite difference numerical scheme over a specified domain. The soil column is divided into several layers, each with distinct thermo-physical properties. Note that GIPL is driven by a prescribed soil moisture. The GIPL model has been successfully validated using ground temperature measurements in shallow boreholes across Alaska (Romanovsky and Osterkamp2000, Nicolsky et al2009).

 

 

模型元数据

{{htmlJSON.HowtoCite}}

Elchin Jafarov (2021). GIPL, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/bb00b991-6300-4d49-9b60-0080180f2619
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-09-07

{{htmlJSON.CoContributor}}

Authorship

:  
University of Colorado
:  
Elchin.Jafarov@colorado.edu
Is authorship not correct? Feed back

History

Last modifier
Yihan Zhang
Last modify time
2021-09-07
Modify times
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
sqRjX3EkrCTf