DIETER (Dispatch and Investment Evaluation Tool with Endogenous Renewables)

DIETER has initially been developed in the research project StoRES to study the role of power storage and other flexibility options in a greenfield setting with high shares of renewables.

power storagegreenfieldrenewables
  286

Contributor

contributed at 2019-10-18

Authorship

Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesHuman-perspectiveEconomic activities

Model Description

English {{currentDetailLanguage}} English

Quoted from: https://wiki.openmod-initiative.org/wiki/DIETER 

The Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) has initially been developed in the research project StoRES to study the role of power storage and other flexibility options in a greenfield setting with high shares of renewables. Meanwhile, several model extensions have been developed and applied to different research questions. The model determines cost-minimizing combinations of power generation, demand-side management, and storage capacities as well as their respective dispatch in both the wholesale and the reserve markets. DIETER thus captures multiple system values of energy storage and other flexibility options related to arbitrage, firm capacity, and reserves. DIETER is an open source model which may be freely used and modified by anyone. The code is licensed under the MIT license, and input data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License. The model is implemented in the General Algebraic Modeling System (GAMS). Running the model thus also requires a GAMS system, an LP solver, and respective licenses.

Based on GAMS; CPLEX. Using MS Excel for data processing.

 

Quoted from: https://www.diw.de/de/diw_01.c.599753.de/modelle.html#ab_599749 

The Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) has been developed in the research project StoRES to study the role of power storage and other flexibility options in a greenfield setting with high shares of renewables. The model determines cost-minimizing combinations of power generation, demand-side management, and storage capacities and their respective dispatch. DIETER thus captures multiple system values of power storage related to arbitrage, firm capacity, and reserves.

DIETER is an open source model which may be freely used and modified by anyone. The code is licensed under the MIT License. Input data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License. To view a copy of these licenses, visit http://opensource.org/licenses/MIT and http://creativecommons.org/licenses/by-sa/4.0/. Whenever you use this model, please refer to http://www.diw.de/dieter. We are happy to receive your feedback.

The model is implemented in the General Algebraic Modeling System (GAMS). Running the model thus requires a GAMS system, an LP solver, and respective licenses. We use the commercial solver CPLEX, but other LP solvers work, as well.

Below you find an overview of available DIETER versions and respective academic papers that include descriptions and documentations. The ZIP files include the GAMS code, an Excel file with all necessary input parameters, and partly also a short documentation of model equations and changes compared to earlier versions.

Future Versions of DIETER will also be made available on this homepage.

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

Wolf-Peter Schill and Alexander Zerrahn (2019). DIETER (Dispatch and Investment Evaluation Tool with Endogenous Renewables), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/bc2768b3-093f-4ac8-ad25-b2b42e56b83b
Copy

QR Code

Contributor(s)

Initial contribute: 2019-10-18

Authorship

Homepage:  
View
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm