## Getis'G

Distinguish between hot and cold spots

Local Spatial autocorreclation

true

#### Classification(s)

Method-focused categoriesData-perspectiveGeostatistical analysis

#### Detailed Description

English {{currentDetailLanguage}} English

Moran's I and Geary's C have good statistical characteristics to describe global spatial autocorrelation, but they do not have the ability to identify different types of spatial aggregation patterns, such as cold spots and hot spots.

General G:

The General G statistic of overall spatial association is given as

$$G=\frac{\sum_{i=1}^{n}w_{ij}x_ix_j}{\sum_{i=1}^{n}x_ix_j}$$

where $$x_i$$ and $$x_j$$ are observations for features i and j, and $$w_{ij}$$ is the spatial weight between feature i and j. n is the number of elements and $$x_i$$ couldn’ t be the same as $$x_j$$.

Meanwhile the expection of General G is E(G), $$E(G)=\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}}{n(n-1)}$$.So When the General G value is higher than the observed E(G) value, there is a high value aggregation.When the General G value is lower than the observed value of E(G), there is address aggregation.As Genera G approaches E(G) the observed values are randomly distributed in space.

Local G:

The local G-exponent can be expressed as

$$G_i^*=\frac{\sum_{j=1}^nw_{ij}x_j-x_{average}\sum_{j=1}^nw_{ij}}{s\sqrt{\frac{[n\sum_{j=1}^nw_{ij}^2-(\sum_{j=1}^nw_{ij})^2]}{n-1}}}$$

where $$x_p=\frac{\sum_{j=1}^{n}x_j}{n}$$ and $$s=\sqrt{\frac{\sum_{j=1}^{n}x_j^2}{n}-x_{average}^2}$$.This index can be used to identify spatial clusters of high and low values (hot spots) of statistical significance and to tell us where the high and low values are clustered.

Last modifier
wu kai
Last modify time
2021-06-18
Modify times
View History

#### QR Code

• {{curRelation.name}}
{{curRelation.name}}

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}

{{htmlJSON.RelatedItems}}
{{props.row.name}}

{{ props.row.overview }}
{{ props.row.overview }}
Drop the file here, orclick to upload.
File size should not exceed 10m.
Select From My Space

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{ item.label }} {{ item.value }}
{{props.row.localName}}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
模型名称
名称 别名 {{tag}}

模型版本
系列名 版本号 目的 修改内容 创建/修改日期 作者

描述信息
摘要 详细描述

{{tag}}
* 时间参考系
* 空间参考系类型 * 空间参考系名称

开发信息
起始日期 终止日期 进展 开发者

* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

元数据版本
编号 目的 修改内容 创建/修改日期 作者
{{index+1}}

{{index+1}}

{{index+1}}

模型类型

分类信息

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}}
* 类型
图例

* 名称 * 描述
上传

示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}

Yes, this is it Cancel

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
Model Classifications 1
Model Classifications 2
Title Author Date Journal Volume(Issue) Pages Links Doi Operation

#### NEW

Name:
Affiliation:
Email:
Homepage:

Yes, this is it Cancel

Confirm
{{htmlJson.path}}
:
/{{path.name}}
search results of '{{searchContentShown}}'

#### No content to show

{{item.name}}

.

{{item.suffix}}

.{{item.suffix}}

{{htmlJson.Max}}: {{toDecimal1(capacity/1073741824)}} GB
Copy
Delete
Rename
/{{path.label}}
{{htmlJson.Change}}
/{{path.name}}
{{htmlJson.SelectFile}}
{{htmlJson.Cancel}} {{htmlJson.Confirm}}
{{htmlJson.path}}
:
/{{path.name}}
/..
{{htmlJson.Cancel}} {{htmlJson.Confirm}}
{{ data.name }}
##### You have select  {{multipleSelection.length+multipleSelectionMyData.length}} data .
• My Uploaded Data
• Output Data
• {{item.computableName}}@{{formatDate(item.runTime)}}
{{scope.row.type}}
{{ scope.row.tag }}
• Fork Data
{{it.category}}

#### NEW

Name:
Affiliation:
Email:
Homepage:
previous next conform
{{htmlJSON.ModelClassifications}}

{{htmlJson.RelatedItems}}
{{ props.row.overview }}
{{ props.row.overview }}
{{htmlJson.Cancel}} {{htmlJson.OK}}
{{ item.label }} {{ item.value }}
{{props.row.localName}}
Model Name :