Quoted from: https://www.firelab.org/project/firebgcv2-landscape-fire-model
The spatially explicit ecosystem process model FireBGCv2 is a landscape fire and vegetation model C++ computer program that incorporates several types of stand dynamics models into a spatially explicit landscape simulation platform. FireBGCv2 is intended as a research tool but it can be employed in various land management applications providing sufficient expertise exists to parameterize and initialize the model. The FireBGCv2 simulation modeling platform is currently used to address six main research areas within the arena of climate-disturbance interactions: 1) exploration of climate-wildfire interactions such as shifting fire regimes and fire severity, disturbance thresholds, and disturbance synergies; 2) effects on ecosystem patterns and processes including vegetation composition, wildlife habitat suitability, forest structure, net primary productivity, and landscape resilience/vulnerability; 3) integration of ecosystem modeling with long-term tree-ring, fire scar, and paleoecological records; 4) effects of climate changes and disturbance processes on landscape carbon dynamics, especially in the context of potential regime shifts; 5) threshold shifts or tipping points, at which relatively small perturbations of forcing variables result in large, abrupt, and long-term changes in ecosystem properties; and 6) potential land management strategies to reduce ecological vulnerability to climate and landscape change.
Current FireBGCv2 research projects:
CLIMET: Quantifying climate- and disturbance-driven shifts in landscape patterns and process across ecological gradients. Wildlife HSI: Modeling wildlife habitat suitability under potential future climate regimes, with incorporation of potential management strategies to restore or sustain critical habitat.
TIPPING POINTS: Assessing critical climate-driven thresholds in landscape dynamics using spatial simulation modeling: climate change tipping points in fire management.
FIRECLIM: Assessing and adaptively managing wildfire risk in the wildland-urban interface for future climate and land use changes.
PALEOBGC: Linking the past with the future: Reconstruction of historic and prehistoric ecosystem dynamics through integration of fire and forest histories and dynamic ecosystem modeling.
FIRMTIP: Evaluating ecological resilience across wildfire suppression levels under climate and fuel treatment scenarios.
WildFIRE PIRE: Feedbacks and consequences of altered fire regimes in the face of climate and land-use change in Tasmania, New Zealand, and the western U.S.
GRAZE-BGC: Strategic role of large herbivore grazing on succession, fuels, and fire dynamics in a changing climate.
FISHFRY: Wildland fire affects native fishes sin the Rocky Mountain West by removing riparian vegetation, increasing solar radiation to the stream, and leading to warmer summer water temperature.
GNLCC: Restoring whitebark pine ecosystems in the face of climate change