气候突变的Yamamoto法和Mann-Kendall法

气候突变的Yamamoto法和Mann-Kendall法

  58

Contributor

contributed at 2018-12-04

Authorship

Affiliation:  
岳天祥编著
Email:  
yue@lreis.ac.cn
Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveAtmospheric regions

Model Description

Chinese {{currentDetailLanguage}} Chinese

气候突变的Yamamoto法和Mann-Kendall

 

(1)Yamamoto法:这种方法是用来检验两随机样本平均值的显著差异。设定一个基准年,设置基准年的信噪比𝑆/𝑁为:

式中,𝑆1𝑆2以及𝑛1𝑛2分别代表连续的随机变量𝑥基准年以前时段和基准年以后时段的2个子样本集𝑥1𝑥2的平均值、方差和时段长度,𝑛1𝑛2根据需要可人为地设定;把𝑆/𝑁>1.0确定为突变,S/𝑁>2.0确定为强突变,该方法把突变出现的时间定在数年宽度的范围。在可用资料的全部时段内,连续设置基准年,从而得到𝑆/𝑁的时间序列。当𝑛1=𝑛2=10时,𝑆/𝑁>1.0,则达到95%以上的信度水平;当𝑛1=𝑛2=14时,𝑆/𝑁>1.0,则达到99.95%以上的信度水平。

(2)Mann-Kendall法:原假设𝐻0:气候序列平稳且随机独立,其概率分布相同。设此气候序列为:𝑥1𝑥2𝑥𝑛𝑚𝑖表示序列中第𝑖样本𝑥𝑖大于𝑥j(1£j£𝑖)的累积数。

定义一个统计量:

如果在原序列平稳且随机独立的假定下,𝑑𝑘的均质、方差分别为:

如果将𝑑𝑘标准化,则有:

式中,𝑢(𝑑𝑘)为标准分布,其概率可以通过计算或查表获得。给一定的显著性水平a0,当a1>a0时,接受原假设𝐻0,它表示此序列将存在一个强的增长或减少趋势。设𝑢(𝑑𝑘)=0,那么所有𝑢(𝑑𝑘)(1£𝑘£𝑁)将构成一个序列𝐶1,通过信度检验可知其是否有变化趋势。

若设表示反序列中第𝑖样本𝑥𝑗大于𝑥𝑖(𝑖£𝑗£𝑁)的累积数,当时,如果,则反序列的有下式给出:

式中,所有将构成另一个序列𝐶2。当序列𝐶1𝐶2存在明显变化趋势时,即超过信度线。如果𝐶1𝐶2曲线相交于信度线之间,则交点便是突变点的开始。

 

参考文献

闫敏华等:大面积开荒扰动下的三江平原近45年气候变化。地理学报,2001,56(2)

 

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

《资源环境数学模型手册》 (2018). 气候突变的Yamamoto法和Mann-Kendall法, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/dcb6aaa4-5050-43e9-8522-183b206b6356
Copy

History

Last modifier : 
Anxun Ren
Last modify time : 
2020-10-28
Modify times : 
View History

QR Code

Contributor(s)

initial contribute: 2018-12-04

Authorship

Affiliation:  
岳天祥编著
Email:  
yue@lreis.ac.cn
Homepage:  
View
Is authorship not correct? Feedback

History

Last modifier : 
Anxun Ren
Last modify time : 
2020-10-28
Modify times : 
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}

You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm