InVEST Habitat Quality Model

The InVEST Habitat Quality model uses habitat quality and rarity as proxies to represent the biodiversity of a landscape, estimating the extent of habitat and vegetation types across a landscape, and their state of degradation. The model combines maps of land use land cover (LULC) with data on threats to habitats and habitat response.

Habitat Quality

true

Contributor(s)

Initial contribute: 2019-07-14

Authorship

:  
Stanford University
:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/habitat_quality.html#the-model

The InVEST Habitat Quality model combines information on LULC and threats to biodiversity to produce habitat quality maps. This approach generates two key sets of information that are useful in making an initial assessment of conservation needs: the relative extent and degradation of different types of habitat types in a region, and changes across time. This approach further allows rapid assessment of the status of and change in habitat as a proxy for more detailed measures of biodiversity status. If habitat changes are taken as representative of genetic, species, or ecosystem changes, the user is assuming that areas with high quality habitat will better support all levels of biodiversity and that decreases in habitat extent and quality over time means a decline in biodiversity persistence, resilience, breadth and depth in the area of decline.

The habitat rarity portion of the model indicates the extent and pattern of natural land cover types on the current or a potential future landscape vis-a-vis the extent of the same natural land cover types in some baseline period. Rarity maps allow users to create a map of the rarest habitats on the landscape relative to the baseline chosen by the user to represent the mix of habitats on the landscape that is most appropriate for the study area’s native biodiversity.

The model requires basic data that are available virtually everywhere in the world, making it useful in areas for which species distribution data are poor or lacking altogether. Extensive occurrence (presence/absence) data may be available in many places for current conditions. However, modeling the change in occurrence, persistence, or vulnerability of multiple species under future conditions is often impossible or infeasible. While a habitat approach leaves out the detailed species occurrence data available for current conditions, several of its components represent advances in functionality over many existing biodiversity conservation planning tools. The most significant is the ability to characterize the sensitivity of habitat types to various threats. Not all habitats are affected by all threats in the same way, and the InVEST model accounts for this variability. Further, the model allows users to estimate the relative impact of one threat over another so that threats that are more damaging to biodiversity persistence on the landscape can be represented as such. For example, grassland could be particularly sensitive to threats generated by urban areas yet moderately sensitive to threats generated by roads. In addition, the distance over which a threat will degrade natural systems is incorporated into the model.

Model assessment of the current landscape can be used as an input to a coarse-filter assessment of current conservation needs and opportunities. Model assessment of potential LULC futures can be used to measure potential changes in habitat extent, quality, and rarity on a landscape and conservation needs and opportunities in the future.

模型元数据

{{htmlJSON.HowtoCite}}

Natural Capital Project (2019). InVEST Habitat Quality Model, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/e8c9c771-ec00-4242-b925-200c05208a36
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2019-07-14

{{htmlJSON.CoContributor}}

Authorship

:  
Stanford University
:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}