SOStream

This algorithm has several novel features. Instead of using a fixed, user defined similarity threshold or a static grid, SOStream detects structure within fast evolving data streams by automatically adapting the threshold for density-based clustering. It also employs a novel cluster updating strategy which is inspired by competitive learning techniques developed for Self Organizing Maps (SOMs). In addition, SOStream has built-in online functionality to support advanced stream clustering operations including merging and fading. This makes SOStream completely online with no separate offline components. Experiments performed on KDD Cup’99 and artificial datasets indicate that SOStream is an effective and superior algorithm in creating clusters of higher purity while having lower space and time requirements compared to previous stream clustering algorithms.

StreamClustering

Contributor(s)

Initial contribute: 2021-01-09

Classification(s)

Method-focused categoriesData-perspectiveGeoinformation analysis

Detailed Description

English {{currentDetailLanguage}} English

Below are quoted from: Isaksson, Charlie, Margaret H. Dunham, and Michael Hahsler. "SOStream: Self organizing density-based clustering over data stream." International Workshop on Machine Learning and Data Mining in Pattern Recognition. Springer, Berlin, Heidelberg, 2012.

In this paper we propose a data stream clustering algorithm, called Self Organizing density based clustering over data Stream (SOStream). This algorithm has several novel features. Instead of using a fixed, user defined similarity threshold or a static grid, SOStream detects structure within fast evolving data streams by automatically adapting the threshold for density-based clustering. It also employs a novel cluster updating strategy which is inspired by competitive learning techniques developed for Self Organizing Maps (SOMs). In addition, SOStream has built-in online functionality to support advanced stream clustering operations including merging and fading. This makes SOStream completely online with no separate offline components. Experiments performed on KDD Cup’99 and artificial datasets indicate that SOStream is an effective and superior algorithm in creating clusters of higher purity while having lower space and time requirements compared to previous stream clustering algorithms.

 

 

模型元数据

{{htmlJSON.HowtoCite}}

{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-01-09

{{htmlJSON.CoContributor}}

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
ozD4iuqho1Wf