Kinematic Model for the CME Deflection in InterPlanetary Space

The DIPS model is designed to predict the trajectory of a CME in ecliptic plane. The basic idea is that the CME trajectory in interplanetary space may be deflected due to the velocity difference between the CME and the ambient solar wind as shown by the diagram (adopted from Wang et al., 2004) below. For a fast CME, the solar wind plasma and interplanetary magnetic field will be piled up from the west and ahead of it, leading to a net deflection force toward the east; for a slow CME, the picture is the opposite.

HELIOSPHERE
  15

Contributor

contributed at 2020-07-02

Authorship

Affiliation:  
STEP Group, University of Science and Technology of China
Email:  
yumingwang.ustc@gmail.com
Affiliation:  
STEP Group, University of Science and Technology of China
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveSpace-earth regions

Model Description

English {{currentDetailLanguage}} English

Quoted from: https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=DIPS

Model Description
The DIPS model is designed to predict the trajectory of a CME in ecliptic plane. The basic idea is that the CME trajectory in interplanetary space may be deflected due to the velocity difference between the CME and the ambient solar wind as shown by the diagram (adopted from Wang et al., 2004) below. For a fast CME, the solar wind plasma and interplanetary magnetic field will be piled up from the west and ahead of it, leading to a net deflection force toward the east; for a slow CME, the picture is the opposite.

Model Input
CME speed (VCME) and the local solar wind speed (VSW) at certain radial distance(s) (r) during the outward propagation of the CME.
Optional input: Date and time, CME angular width (default is 60 deg) and initial longitude of the CME (default is 0 deg).

Model Output
A figure showing the trajectory of the CME in the ecliptic plane.

References and relevant publications

  • Yuming Wang, Boyi Wang, Chenglong Shen, Fang Shen, and Noe Lugaz, Deflected propagation of a coronal mass ejection from the corona to interplanetary space, J. Geophys. Res., 119, 5117-5132, 2014.
  • Wang, Yuming, Chenglong Shen, S. Wang, and Pinzhong Ye, Deflection of coronal mass ejection in the interplanetary medium, Sol. Phys., 222, 329-343, 2004.

CCMC Contact(s)
Peter MacNeice
301-286-2061

Developer Contact(s)
Yuming Wang
Chenglong Shen

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

Yuming Wang, Chenglong Shen (2020). Kinematic Model for the CME Deflection in InterPlanetary Space, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/f909b8dd-531d-454b-aa3c-52750b3cccd3
Copy

QR Code

Contributor(s)

Initial contribute: 2020-07-02

Authorship

Affiliation:  
STEP Group, University of Science and Technology of China
Email:  
yumingwang.ustc@gmail.com
Affiliation:  
STEP Group, University of Science and Technology of China
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm