InVEST Annual Water Yield Model

The InVEST Reservoir Hydropower Production model (also known as the “Water Yield model”) estimates the annual average quantity of water produced by a watershed. The economic model then estimates the value of the water yield for reservoir hydropower production.

Reservoir Hydropower Productioneconomic

Alias

InVEST Reservoir Hydropower Production model

Contributor(s)

Initial contribute: 2019-07-14

Authorship

:  
Stanford University
:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/reservoirhydropowerproduction.html

Summary

Hydropower accounts for twenty percent of worldwide energy production, most of which is generated by reservoir systems. InVEST estimates the annual average quantity and value of hydropower produced by reservoirs, and identifies how much water yield or value each part of the landscape contributes annually to hydropower production. The model has three components: water yield, water consumption, and hydropower valuation. The biophysical models do not consider surface – ground water interactions or the temporal dimension of water supply. The valuation model assumes that energy pricing is static over time.

Introduction

The provision of fresh water is an ecosystem service that contributes to the welfare of society in many ways, including through the production of hydropower, the most widely used form of renewable energy in the world. Most hydropower production comes from watershed-fed reservoir systems that generally deliver energy consistently and predictably. The systems are designed to account for annual variability in water volume, given the likely levels for a given watershed, but are vulnerable to extreme variation caused by land use and land cover (LULC) changes. LULC changes can alter hydrologic cycles, affecting patterns of evapotranspiration, infiltration and water retention, and changing the timing and volume of water that is available for hydropower production (World Commission on Dams 2000; Ennaanay 2006).

Changes in the landscape that affect annual average water yield upstream of hydropower facilities can increase or decrease hydropower production capacity. Maps of where water yield used for hydropower is produced can help avoid unintended impacts on hydropower production or help direct land use decisions that wish to maintain power production, while balancing other uses such as conservation or agriculture. Such maps can also be used to inform investments in restoration or management that downstream stakeholders, such as hydropower companies, make in hopes of improving or maintaining water yield for this important ecosystem service. In large watersheds with multiple reservoirs for hydropower production, areas upstream of power plants that sell to a higher value market will have a higher value for this service. Maps of how much value each parcel contributes to hydropower production can help managers avoid developments in the highest hydropower value areas, understand how much value will be lost or gained as a consequence of different management options, or identify which hydropower producers have the largest stake in maintaining water yield across a landscape.

The Model

The InVEST Water Yield model estimates the relative contributions of water from different parts of a landscape, offering insight into how changes in land use patterns affect annual surface water yield and hydropower production.

Modeling the connections between landscape changes and hydrologic processes is not simple. Sophisticated models of these connections and associated processes (such as the WEAP model) are resource and data intensive and require substantial expertise. To accommodate more contexts, for which data are readily available, InVEST maps and models the annual average water yield from a landscape used for hydropower production, rather than directly addressing the effect of LULC changes on hydropower, as this process is closely linked to variation in water inflow on a daily to monthly timescale. Instead, InVEST calculates the relative contribution of each land parcel to annual average hydropower production and the value of this contribution in terms of energy production. The net present value of hydropower production over the life of the reservoir also can be calculated by summing discounted annual revenues.

How it Works

The model runs on a gridded map. It estimates the quantity and value of water used for hydropower production from each subwatershed in the area of interest. It has three components, which run sequentially. First, it determines the amount of water running off each pixel as the precipitation minus the fraction of the water that undergoes evapotranspiration. The model does not differentiate between surface, subsurface and baseflow, but assumes that all water yield from a pixel reaches the point of interest via one of these pathways. This model then sums and averages water yield to the subwatershed level. The pixel-scale calculations allow us to represent the heterogeneity of key driving factors in water yield such as soil type, precipitation, vegetation type, etc. However, the theory we are using as the foundation of this set of models was developed at the subwatershed to watershed scale. We are only confident in the interpretation of these models at the subwatershed scale, so all outputs are summed and/or averaged to the subwatershed scale. We do continue to provide pixel-scale representations of some outputs for calibration and model-checking purposes only. These pixel-scale maps are not to be interpreted for understanding of hydrological processes or to inform decision making of any kind.

Second, beyond annual average runoff, it calculates the proportion of surface water that is available for hydropower production by subtracting the surface water that is consumed for other uses. Third, it estimates the energy produced by the water reaching the hydropower reservoir and the value of this energy over the reservoir’s lifetime.

 
_images/watercycle.png

Figure 1. Conceptual diagram of the simplified water balance method used in the annual water yield model. Aspects of the water balance that are in color are included in the model, those that are in grey are not.

模型元数据

{{htmlJSON.HowtoCite}}

Natural Capital Project (2019). InVEST Annual Water Yield Model, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/221e19c8-79fb-41e2-9f9f-901cead9f680
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2019-07-14

{{htmlJSON.CoContributor}}

Authorship

:  
Stanford University
:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
M8iqS03rkUYw