## Moran's I Reflects the attribute similarity degree of spatial connection or spatial adjacent unit

#### Alias

Spatial Autocorrelation

true

#### Classification(s)

Method-focused categoriesData-perspectiveGeostatistical analysis

#### Detailed Description

English {{currentDetailLanguage}} English

Global Moran's I:
Moran index statistic is a kind of widely used spatial autocorrelation statistic, which is in the form as follows:

$$I=\frac{n}{S_0}.\frac{\sum_{i}^{n}\sum_{j=1}^{n}w_{ij}(x_i-x_{average})(x_j-x_{average})}{\sum_{i}^{n}(x_i-x_{average})^2}$$

$$x_i$$ repesents the observed value at the ith spatial position ,$$x_p=\frac{1}{n}\sum_{i=1}^{n}x_i$$ ,$$w_{ij}$$ repesents whether i element and j element are adjacent. In general, adjacent elements are 1, and non-adjacent elements are 0. $$S_0$$ represents the sum of all the elements of the spatial weight matrix W.

It's easy to see by looking at this that $$(x_i-x_{average})$$ measure the difference between the i element and the mean of the whole region. and $$\sum_{j=1}^{n}w_{ij}(x_j-x_{average})$$ measure the difference between the elements which are near the i element and mean of the whole region. so if this region is spatial clustered, $$(x_i-x_{average})$$ and $$(x_j-x_{average})$$ will have the same sign, which will lead that Moran's I is greate than 0. and if this region is spatial alien, $$(x_i-x_{average})$$ and $$(x_j-x_{average})$$ will have the different sign, which will lead that Moran's I is less than 0.

Therefore, when Moran's I is significantly positive, there is a significant positive correlation, and similar observed values (high and low values) tend to cluster in space.

When Moran's I is a significant complex value.There was a significant negative correlation, and similar observed values tended to be dispersed.

When Moran's I approaches the expected value ($$\frac{-1}{n-1}$$, which tends to 0 with the increase of the number of samples), it indicates that there is no spatial autocorrelation and the observed values are arranged randomly in space.

Local Moran's I:

In the global correlation analysis, if the global Moran index is significant, we can consider that there is spatial correlation in this region.However, we still don't know exactly where spatial aggregation exists.In this case, the local Moran exponent is needed, and the formula for the local Moran's I is as follows.

$$I_i=\frac{n}{S^2}.(y_i-y_{average})\sum_{j\neq{i}}^nw_{ij}(y_j-y_{average})$$

where $$S^2=\sum_{i=1}^{n}(y_i-y)^2$$.Through observation, we can find that $$(y_i-y_{average})$$ represents the difference between the observed value of the ith region and the average observed value of the whole region, while $$\sum_{j\neq{i}}^{n}(y_j-y_{average})$$ represents the difference between the surrounding region and the average observed value of the whole region. The local Moran's I can be used to determine which position in the region has spatial autocorrelation

Last modifier
wu kai
Last modify time
2021-06-18
Modify times
10  View History

#### QR Code {{curRelation.name}}
• {{curRelation.name}}
{{curRelation.name}}

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}

{{htmlJSON.RelatedItems}}
{{props.row.name}}
• • • • {{ props.row.overview }}
{{ props.row.overview }}
Drop the file here, orclick to upload.
File size should not exceed 10m.
Select From My Space

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{ item.label }} {{ item.value }}
{{props.row.localName}}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
模型名称
名称 别名 {{tag}}

模型版本
系列名 版本号 目的 修改内容 创建/修改日期 作者

描述信息
摘要 详细描述

{{tag}}
* 时间参考系
* 空间参考系类型 * 空间参考系名称

开发信息
起始日期 终止日期 进展 开发者

* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

元数据版本
编号 目的 修改内容 创建/修改日期 作者
{{index+1}}

{{index+1}}

{{index+1}}

模型类型

分类信息

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}}
* 类型
图例

* 名称 * 描述
上传

示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}

Yes, this is it Cancel

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
Model Classifications 1
Model Classifications 2 Title Author Date Journal Volume(Issue) Pages Links Doi Operation

#### NEW

Name:
Affiliation:
Email:
Homepage:

Yes, this is it Cancel

Confirm
{{htmlJson.path}}
:
/{{path.name}}
search results of '{{searchContentShown}}'

#### No content to show

{{item.name}}

.

{{item.suffix}}

.{{item.suffix}}

{{htmlJson.Max}}: {{toDecimal1(capacity/1073741824)}} GB
Copy
Delete
Rename
/{{path.label}}
{{htmlJson.Change}}
/{{path.name}}
{{htmlJson.SelectFile}}
{{htmlJson.Cancel}} {{htmlJson.Confirm}}
{{htmlJson.path}}
:
/{{path.name}}
/..
{{htmlJson.Cancel}} {{htmlJson.Confirm}}
{{ data.name }}
##### You have select  {{multipleSelection.length+multipleSelectionMyData.length}} data .
• Output Data
• {{item.computableName}}@{{formatDate(item.runTime)}}
{{scope.row.type}}
{{ scope.row.tag }}
• Fork Data
{{it.category}}

#### NEW

Name:
Affiliation:
Email:
Homepage:
previous next conform
{{htmlJSON.ModelClassifications}}

{{htmlJson.RelatedItems}}
{{ props.row.overview }}
{{ props.row.overview }}
{{htmlJson.Cancel}} {{htmlJson.OK}}
{{ item.label }} {{ item.value }}
{{props.row.localName}}
Model Name :