BNU-HESM (Beijing Normal University - Human Earth System Model)

BNU-HESM combines the economic and climate damage components of the Dynamic Integrated Model of Climate Change and Economy to the BNU-ESM model

economicclimate damageEarth system model
  11

Contributor

contributed at 2021-01-16

Authorship

Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesIntegrated-perspectiveGlobal scale

Model Description

English {{currentDetailLanguage}} English

Quoted from: Yang, Shili, Wenjie Dong, Jieming Chou, Jinming Feng, Xiaodong Yan, Zhigang Wei, Wenping Yuan, Yan Guo, Yanli Tang, and Jiacong Hu. "A brief introduction to BNU-HESM1. 0 and its earth surface temperature simulations." Advances in Atmospheric Sciences 32, no. 12 (2015): 1683-1688. http://dx.doi.org/10.1007/s00376-015-5050-6 

Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system. In this paper, a new human-earth system model, BNU-HESM1.0, constructed by combining the economic and climate damage components of the Dynamic Integrated Model of Climate Change and Economy to the BNU-ESM model, is introduced. The ability of BNU-HESM1.0 in simulating the global CO2 concentration and surface temperature is also evaluated. We find that, compared to observation, BNU-HESM1.0 underestimates the global CO2 concentration and its rising trend during 1965-2005, due to the uncertainty in the economic components. However, the surface temperature simulated by BNU-HESM1.0 is much closer to observation, resulting from the overestimates of surface temperature by the original BNU-ESM model. The uncertainty of BNU-ESM falls within the range of present earth system uncertainty, so it is the economic and climate damage component of BNU-HESM1.0 that needs to be improved through further study. However, the main purpose of this paper is to introduce a new approach to investigate the complex relationship between human activity and the earth system. It is hoped that it will inspire further ideas that prove valuable in guiding human activities appropriate for a sustainable future climate.

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

Wenjie Dong and BNU-HESM team (2021). BNU-HESM (Beijing Normal University - Human Earth System Model), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/2eb9235a-68f3-4ba6-a248-b1638ddcbea4
Copy

QR Code

Contributor(s)

Initial contribute: 2021-01-16

Authorship

Homepage:  
View
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm