Maxent (Maximum entropy)

From a set of environmental (e.g., climatic) grids and georeferenced occurrence localities, the model expresses a probability distribution where each grid cell has a predicted suitability of conditions for the species.

probability distributionsuitabilityspecies

Contributor(s)

Initial contribute: 2021-12-10

Authorship

:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesData-perspectiveGeoinformation analysis

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://biodiversityinformatics.amnh.org/open_source/maxent/ 

Under particular assumptions about the input data and biological sampling efforts that led to occurrence records, the output can be interpreted as predicted probability of presence (cloglog transform), or as predicted local abundance (raw exponential output).

The idea for Maxent was first conceived of here at the Center for Biodiversity and Conservation at the American Museum of Natural History (AMNH) through a public-private partnership between the AMNH and AT&T-Research. Steven Phillips and the other developers of Maxent are still engaged in its development and maintenance, and the Google group will remain the main mechanism for user questions.

模型元数据

{{htmlJSON.HowtoCite}}

Maxent team (2021). Maxent (Maximum entropy), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/493c263b-7902-4f18-94a3-536937801978
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-12-10

{{htmlJSON.CoContributor}}

Authorship

:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
JrrfWOjHHvTc