AFGL Electron Precipitation Model

This model provides the integral energy and number flux of precipitating auroral electrons for seven levels of magnetic activity (Kp = 0, 1, 2, 3, 4, 5, and 6 and greater). It is based on about 14.1 million spectra (50 eV to 20 keV) from the SSJ/3 detectors on the DMSP F2 and F4 satellites and the CRL-251 detector on the P78-1 satellite. At each level of activity the high-latitude region was separated into 30 zones in corrected geomagnetic latitude (from 50 to 90) and 48 one-half-hour zones in magnetic local time. Epstein transition functions are used to represent the spatial variation, and a Fourier series of order 6 is used to represent the temporal variation resulting in a total of 364 model coefficients. Coefficient sets were determined for the electron energy flux, the number flux, and the Pedersen and Hall conductivities. The latter is found with the help of empirical relationships between the conductivities and the electron energy flux and average energy.

  287

Contributor

contributed at 2019-07-02

Authorship

Affiliation:  
Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts 01731
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveSpace-earth regions

Model Description

English {{currentDetailLanguage}} English

Quoted from: https://ccmc.gsfc.nasa.gov/modelweb/ionos/afgl_electron.html

Parameter: Integral energy flux and number flux of precipitating auroral electrons, Pedersen and Hall conductivity

Brief Description:
This model provides the integral energy and number flux of precipitating auroral electrons for seven levels of magnetic activity (Kp = 0, 1, 2, 3, 4, 5, and 6 and greater). It is based on about 14.1 million spectra (50 eV to 20 keV) from the SSJ/3 detectors on the DMSP F2 and F4 satellites and the CRL-251 detector on the P78-1 satellite. At each level of activity the high-latitude region was separated into 30 zones in corrected geomagnetic latitude (from 50 to 90) and 48 one-half-hour zones in magnetic local time. Epstein transition functions are used to represent the spatial variation, and a Fourier series of order 6 is used to represent the temporal variation resulting in a total of 364 model coefficients. Coefficient sets were determined for the electron energy flux, the number flux, and the Pedersen and Hall conductivities. The latter is found with the help of empirical relationships between the conductivities and the electron energy flux and average energy.

Availability: FORTRAN code may be available from the authors (see Heppner-Maynard-Rich Electric Field Model).

References:
D. A. Hardy, M. S. Gussenhoven, and E. Holeman, A Statistical Model of the Auroral Electron Precipitation, J. Geophys. Res. 90, 4229, 1985.

R. M. Robinson, R. R. Vondrack, K. Miller, T. Dabbs, and D. A. Hardy, On Calculating Ionospheric Conductivities from the Flux and Energy of Precipitating Electrons, J. Geophys. Res. 92, 2565, 1987.

D. A. Hardy, M. S. Gussenhoven, and R. Raistrick, Statistical and Functional Representations of the Pattern of Auroral Energy Flux, Number Flux, and Conductivity, J. Geophys. Res. 92, 12275, 1987.

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

D. A. Hardy, M. S. Gussenhoven (2019). AFGL Electron Precipitation Model, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/5f0da5c3-c100-4353-9246-9957da91d93b
Copy

QR Code

Contributor(s)

Initial contribute: 2019-07-02

Authorship

Affiliation:  
Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts 01731
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm