ADCIRC (Advanced Circulation Model)

ADCIRC is a system of computer programs for solving time dependent, free surface circulation and transport problems in two and three dimensions. These programs utilize the finite element method in space allowing the use of highly flexible, unstructured grids.

finite elementfree surface circulationtime dependenttransport problems

Contributor(s)

Initial contribute: 2021-02-07

Authorship

:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveOcean regions

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: http://adcirc.org/home/documentation/users-manual-v50/introduction/ 

ADCIRC is a highly developed computer program for solving the equations of motion for a moving fluid on a rotating earth. These equations have been formulated using the traditional hydrostatic pressure and Boussinesq approximations and have been discretized in space using the finite element (FE) method and in time using the finite difference (FD) method.

ADCIRC can be run either as a two-dimensional depth integrated (2DDI) model or as a three-dimensional (3D) model. In either case, elevation is obtained from the solution of the depth-integrated continuity equation in Generalized Wave-Continuity Equation (GWCE) form. Velocity is obtained from the solution of either the 2DDI or 3D momentum equations. All nonlinear terms have been retained in these equations.

ADCIRC can be run using either a Cartesian or a spherical coordinate system.

The GWCE can be solved using either a consistent or a lumped mass matrix (via a compiler flag) and an implicit or explicit time stepping scheme (via variable time weighting coefficients). If a lumped, fully explicit formulation is specified, no matrix solver is necessary. In all other cases the GWCE is solved using the Jacobi preconditioned iterative solver from the ITPACKV 2D package.

The 2DDI momentum equations are lumped and therefore require no matrix solver. In 3D, vertical diffusion is treated implicitly and the vertical mass matrix is not lumped, thereby requiring the solution of a complex, tri-diagonal matrix problem over the vertical at every horizontal node.

ADCIRC boundary conditions include:

  • specified elevation (harmonic tidal constituents or time series)
  • specified normal flow (harmonic tidal constituents or time series)
  • zero normal flow
  • slip or no slip conditions for velocity
  • external barrier overflow out of the domain
  • internal barrier overflow between sections of the domain
  • surface stress (wind and/or wave radiation stress)
  • atmospheric pressure
  • outward radiation of waves (Sommerfield condition)

ADCIRC can be forced with:

  • elevation boundary conditions
  • normal flow boundary conditions
  • surface stress boundary conditions
  • tidal potential
  • earth load/self attraction tide

ADCIRC includes a least squares analysis routine that computes harmonic constituents for elevation and depth averaged velocity during the course of the run thereby avoiding the need to write out long time series for post processing.

ADCIRC has been optimized by unrolling loops for enhanced performance on multiple computer architectures. ADCIRC includes MPI library calls to allow it to operate at high efficiency (typically better than 90 per cent) on parallel computer architectures.

模型元数据

{{htmlJSON.HowtoCite}}

ADCIRC team (2021). ADCIRC (Advanced Circulation Model) , Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/8658458d-348d-4014-a824-ba1c7a6145ba
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-02-07

{{htmlJSON.CoContributor}}

Authorship

:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
jSKbpb6TUxpL