The SWIR model was introduced in 2017 by Lee et al.




Initial contribute: 2019-05-09


Is authorship not correct? Feed back


Method-focused categoriesProcess-perspectivePhysical process calculation
Method-focused categoriesProcess-perspectiveHuman-activity calculation

Detailed Description

English {{currentDetailLanguage}} English


The SWIR model was introduced in 2017 by Lee et al. [1].

In this model, during the epidemics, a node is allowed to change its status from Susceptible (S) to Weakened (W) or Infected (I), then to Removed(R).

The model is instantiated on a graph having a non-empty set of infected nodes.

At time t a node in the state I is selected randomly and the states of all neighbors are checked one by one. If the state of a neighbor is S then this state changes either i) to I with probability kappa or ii) to W with probability mu. If the state of a neighbor is W then the state W changes to I with probability nu. We repeat the above process for all nodes in state I and then changes to R for each associated node.


During the simulation a node can experience the following statuses:

Name Code
Susceptible 0
Infected 1
Weakened 2
Removed 3


Name Type Value Type Default Mandatory Description
kappa Model float in [0, 1]   True  
mu Model float in [0, 1]   True  
nu Model float in [0, 1]   True  

The initial infection status can be defined via:

  • percentage_infected: Model Parameter, float in [0, 1]
  • Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.


The following class methods are made available to configure, describe and execute the simulation:



Model Constructor

Parameters: graph – A networkx graph object

Set the initial model configuration

Parameters: configuration – a `ndlib.models.ModelConfig.Configuration` object

Reset the simulation setting the actual status to the initial configuration.



Describes the current model parameters (nodes, edges, status)

Returns: a dictionary containing for each parameter class the values specified during model configuration

Specify the statuses allowed by the model and their numeric code

Returns: a dictionary (status->code)

Execute Simulation


Execute a single model iteration

Parameters: node_status – if the incremental node status has to be returned.
Returns: Iteration_id, (optional) Incremental node status (dictionary node->status), Status count (dictionary status->node count), Status delta (dictionary status->node delta)

Execute a bunch of model iterations

  • bunch_size – the number of iterations to execute
  • node_status – if the incremental node status has to be returned.

a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}


In the code below is shown an example of instantiation and execution of an SEIR simulation on a random graph: we set the initial set of infected nodes as % of the overall population, a probability of infection of 1%, a removal probability of 0.5% and an incubation period of 5% (e.g. 20 iterations).

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SWIRModel as swir

# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

# Model selection
model = swir.SWIRModel(g)

# Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('kappa', 0.01)
cfg.add_model_parameter('mu', 0.005)
cfg.add_model_parameter('nu', 0.05)
cfg.add_model_parameter("percentage_infected", 0.05)

# Simulation execution
iterations = model.iteration_bunch(200)
  1. Lee, W. Choi, J. Kertész, B. Kahng. “Universal mechanism for hybrid percolation transitions”. Scientific Reports, vol. 7(1), 5723, 2017.



D.Lee (2019). Epidemics-SWIR, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/8876a8b9-4c9e-4085-b2fd-421e66815976


Initial contribute : 2019-05-09



Is authorship not correct? Feed back

QR Code


{{curRelation.author.join('; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

编号 目的 修改内容 创建/修改日期 作者

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型

* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}