Elmer/Ice

Elmer/Ice is a full-Stokes, finite element, ice sheet / ice flow model.

ice sheetice flowfull-Stokesfinite element
  651

Contributor

contributed at 2019-10-13

Authorship

Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveFrozen regions

Model Description

English {{currentDetailLanguage}} English

Quoted from: https://elmerice.elmerfem.org/capabilities 

Elmer is an open-source, parallel, Finite Element code, mainly developed by the CSC in Finland. The ice sheet / ice flow model Elmer/Ice is based on Elmer and includes developments related to glaciological problems.

Elmer/Ice includes a large number of dedicated solvers and user functions which are described in these pages.

Elmer/Ice solves the full-Stokes equations for various ice rheologies (classical Glen’s flow law, anisotropic laws and porous compressible firn/snow law). It includes also solvers for the classical asymptotical expansions of the Stokes equations, namely the Shallow Ice Approximation (SIA) and the Shallow Shelf Approximation (SSA). All these equations can be solved diagnostically or in transient, allowing the displacement of the boundaries. By the multi-physics approach of Elmer it is also possible to solve coupled problems, such as thermo-mechanically coupled ice flow.

Elmer/Ice includes solvers for internal variables evolution, such as fabric for the anisotropic rheology or the density for the firn/snow law. Age of ice, temperature, stress and strain-rate fields have also their own solver.

In terms of boundary conditions, Elmer/Ice includes various friction laws (classical Weertman sliding law or effective-pressure dependent friction laws) and two basal hydrology model to evaluate the effective pressure. For the the grounding line dynamics, Elmer/Ice solves the contact problem between ice and bedrock defined by a variational inequality.

Elmer/Ice includes inverse methods to infer largely undetermined parameters such as the basal friction or ice fluidity.

Elmer/Ice also includes dedicated mesh tools specially designed to ice-sheet and glacier type geometries. Three-dimensional meshes are obtained using plane view unstructured mesh constructed using the tool YAMS and then vertically extruded.

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

CSC-IT Center for Science Ltd. in Finland. (2019). Elmer/Ice, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/953ce482-0a3c-4b97-a6ae-a4b43bae8e8a
Copy

QR Code

Contributor(s)

Initial contribute: 2019-10-13

Authorship

Homepage:  
View
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm