ISBA-CTRIP (ISBA - CNRM version TRIP)

The ISBA-CTRIP global land surface modeling system is more ambitious than the previous version, ISBA-TRIP. This system is embedded in the SURFEX version 8 modeling platform. It can be used in large-scale hydrological applications.

land surfacelarge-scalehydrological

true

Contributor(s)

Initial contribute: 2021-06-04

Authorship

:  
CNRM, National Centre for Meteorological Research
:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveLand regions
Application-focused categoriesNatural-perspectiveFrozen regions
Application-focused categoriesNatural-perspectiveAtmospheric regions
Application-focused categoriesIntegrated-perspectiveGlobal scale

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://www.umr-cnrm.fr/spip.php?article1092&lang=en 

The new ISBA-CTRIP global land surface modeling system is more ambitious than the previous version, ISBA-TRIP. This system developed during the last decade is embedded in the SURFEX version 8 modeling platform. It is used in our atmospheric climate models and our coupled climate models that participate in CMIP6 but also in large scale hydrological applications. ISBA via SURFEX and CTRIP are interfaced with the Xml configurable Input/Output Server (XIOS) developped by IPSL/LSCE in order to provide both high performance output for massively parallel simulations, an easy configuration of model outputs and of some inline post-processing.

ISBA-CTRIP can be used with its physical core only, as for instance in our CNRM-CM6-1 climate model. It can also be used with the carbon cycle activated as in our « Earth System » model CNRM-ESM2-1.

ISBA is used here in its multi-layer "diffusion" version. It explicitly solves the one-dimensional Fourier and Darcy laws throughout the soil (Boone et al. 2000; Decharme et al. 2011; Decharme et al. 2013), accounting for the hydraulic and thermal properties of soil organic carbon (Decharme et al. 2016). The use of a multilayer snow model of intermediate complexity (Boone and Etchevers 2001; Decharme et al. 2016) allows separate water and energy budgets to be simulated for the soil and the snowpack. The leaf area index is imposed from satellite observations (as it is the case in CNRM-CM6-1) but, for some studies, it can also be interactively calculated (optional) as in the « Earth System » version.

CTRIP simulates river discharges and means "the CNRM version of TRIP". Indeed, the previous TRIP was coded in Fortran 77 with binary I/O format, which limited its performance, the development of new physical components, and its ability to be coupled with others models. Accordingly, it has been re-coded in Fortran 90 using the netcdf I/O format, and the previous global river channel network at 1° resolution has been increased to 0.5° resolution and enhanced over Europe. The river stream flow velocity is now solved dynamically via Manning’s formula and assuming a rectangular river cross-section (Decharme et al. 2010).

An explicit two-way coupling between ISBA and CTRIP has been set up via the introduction of a standardized coupling interface in SURFEX (Voldoire et al. 2017) with the OASIS3-MCT coupler. This coupling accounts for, first, a dynamic river flooding scheme in which floodplains interact with the soil and the atmosphere through free-water evaporation, infiltration and precipitation interception (Decharme et al. 2012) and second, a two-dimensional diffusive groundwater scheme to represent unconfined aquifers and upward capillarity fluxes into the superficial soil (Vergnes et al. 2012; Vergnes and Decharme 2012; Vergnes et al. 2014).

More details on hydrological aspects can be found in Decharme et al. 2019.

Publications :

ISBA-CTRIP :

  • Decharme B., Delire C., Minvielle M., Colin J., Vergnes J.-P., Alias A., Saint-Martin D., Séférian R., Sénési S., Voldoire A., (2019). Recent changes in the ISBA‐CTRIP land surface system for use in the CNRM‐CM6 climate model and in global off‐line hydrological applications. Journal of Advances in Modeling Earth Systems, 11, 1207– 1252., https://doi.org/10.1029/2018MS001545
  • Delire C., Séférian R., Decharme B., Alkama R., Calvet J.‐C., Carrer D., Gibelin A.-L., Joetzjer E., Morel X., Rocher M., Tzanos D. (2020). The global land carbon cycle simulated with ISBA‐CTRIP: Improvements over the last decade. Journal of Advances in Modeling Earth Systems, 12, e2019MS001886. https://doi.org/10.1029/2019MS001886
  • Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., et al. (2017). SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geoscientific Model Development, 10(11). https://doi.org/10.5194/gmd-10-4207-2017

ISBA "diffusion" :

  • Boone, A., Masson, V., Meyers, T., Noilhan, J., Boone, A., Masson, V., et al. (2000). The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme. Journal of Applied Meteorology, 39(9), 1544–1569. https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2
  • Decharme, B., Boone, A., Delire, C., & Noilhan, J. (2011). Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions. Journal of Geophysical Research Atmospheres, 116(20). https://doi.org/10.1029/2011JD016002
  • Decharme, B., Martin, E., & Faroux, S. (2013). Reconciling soil thermal and hydrological lower boundary conditions in land surface models. Journal of Geophysical Research Atmospheres, 118(14). https://doi.org/10.1002/jgrd.50631
  • Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., & Morin, S. (2016). Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model. Cryosphere, 10(2). https://doi.org/10.5194/tc-10-853-2016

ISBA "carbon" :

  • Calvet, J.-C., Noilhan, J., Roujean, J.-L. L., Bessemoulin, P., Cabelguenne, M., Olioso, A., & Wigneron, J.-P. P. (1998). An interactive vegetation SVAT model tested against data from six contrasting sites. Agricultural and Forest Meteorology, 92(2), 73–95. https://doi.org/10.1016/S0168-1923(98)00091-4
  • Calvet, J. C., Soussana J., F. (2001), Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme, Agr. Forest Meteol., 108,129-152.
  • Carrer, D, Roujean, J.-L., Lafont, S., Calvet, J.-C., Boone, A., Decharme, B., Delire, C., and Gastellu-Etchegorry, J. P. (2013), A canopy radiative transfer scheme with explicit FAPAR for the interactive vegetation model ISBA-A-gs: impact on carbon fluxes, J. Geophys. Res. Biogeo., 118, 1–16, doi:10.1002/jgrg.20070.
  • Gibelin 2007, Cycle du carbone dans un modèle de surface continentale : modélisation, validation et mise en oeuvre à l’échelle globale, thèse de doctorat, 2007
  • Goudriaan, J., H.H. van Laar, H. van Keulen & W. Louwerse: Photosynthesis, C0 2 and plant production. In: W. Day & R.K. Atkin (Eds.), Wheat growth and modelling. NATO AS/ Series, Series A, Vol 86. Plenum Press, New York, 107-122. 1985
  • Joetzjer E., Delire C., Douville H., Ciais P., Decharme B., D. Carrer, H. Verbeeck, M. De Weirdt, D. Bonal (2015), Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest, Geosci. Model Dev. 8, 1709-1727, doi:10.5194/gmd-8-1709-2015
  • Parton, W. J., Stewart, J. W. B., & Cole, C. V. (1988). Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5(1), 109–131. https://doi.org/10.1007/BF02180320

CTRIP :

  • Decharme, B., Douville, H., Prigent, C., Papa, F., & Aires, F. (2008). A new river flooding scheme for global climate applications : Off-line evaluation over South America. Journal of Geophysical Research Atmospheres, 113(11). https://doi.org/10.1029/2007JD009376
  • Decharme, B., Alkama, R., Douville, H., Becker, M., & Cazenave, A. (2010). Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage. Journal of Hydrometeorology, 11(3), 601–617. https://doi.org/10.1175/2010JHM1212.1
  • Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., & Prigent, C. (2012). Global off-line evaluation of the ISBA-TRIP flood model. Climate Dynamics, 38(7–8), 1389–1412. https://doi.org/10.1007/s00382-011-1054-9
  • Vergnes, J.-P., & Decharme, B. (2012). A simple groundwater scheme in the TRIP river routing model: Global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges. Hydrology and Earth System Sciences, 16(10). https://doi.org/10.5194/hess-16-3889-2012
  • Vergnes, J.-P., Decharme, B., Alkama, R., Martin, E., Habets, F., & Douville, H. (2012). A simple groundwater scheme for hydrological and climate applications: Description and offline evaluation over France. Journal of Hydrometeorology, 13(4). https://doi.org/10.1175/JHM-D-11-0149.1
  • Vergnes, J.-P., Decharme, B., & Habets, F. (2014). Introduction of groundwater capillary rises using subgrid spatial variability of topography into the ISBA land surface model. Journal of Geophysical Research, 119(19), 11,065-11,086. https://doi.org/10.1002/2014JD021573

{{htmlJSON.HowtoCite}}

ISBA-CTRIP team (2021). ISBA-CTRIP (ISBA - CNRM version TRIP), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/9835f3e5-094a-4068-94d3-9662156ce361
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-06-04

{{htmlJSON.CoContributor}}

Authorship

:  
CNRM, National Centre for Meteorological Research
:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}