MITgcm (Massachusetts Institute of Technology General Circulation Model)

A numerical model designed for study of the atmosphere, ocean, and climate, MITgcm’s flexible non-hydrostatic formulation enables it to efficiently simulate fluid phenomena over a wide range of scales; its adjoint capabilities enable it to be applied to sensitivity questions and to parameter and state estimation problems.

atmosphereoceanclimate

Contributor(s)

Initial contribute: 2021-02-25

Authorship

:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesIntegrated-perspectiveGlobal scale

Detailed Description

English {{currentDetailLanguage}} English

Quoted from: https://mitgcm.org/about-mitgcm/ 

MITgcm (MIT General Circulation Model) is a numerical model designed for study of the atmosphere, ocean, and climate. Its non-hydrostatic formulation enables it to simulate fluid phenomena over a wide range of scales; its adjoint capability enables it to be applied to parameter and state estimation problems. By employing fluid isomorphisms, one hydrodynamical kernel can be used to simulate flow in both the atmosphere and ocean.

You are welcome to download and use MITgcm.

Papers charting the development of MITgcm can be found here.

For visualizations of MITgcm output as applied to atmosphere, ocean and climate research, see MITgcm youtube channel.

 

Below are quoted from: https://mitgcm.readthedocs.io/en/latest/overview/overview.html#illustrations-of-the-model-in-action 

MITgcm has a number of novel aspects:

  • it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive forward both atmospheric and oceanic models - see Figure 1.1

One model for atmospheric and oceanic simulations

Figure 1.1 MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.

  • it has a non-hydrostatic capability and so can be used to study both small-scale and large scale processes - see Figure 1.2

MITgcm can simulate a wide range of scales

Figure 1.2 MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon - from convection on the left, all the way through to global circulation patterns on the right.

  • finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3

Finit volume techniques

Figure 1.3 Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals σσ (terrain following) coordinates.

  • tangent linear and adjoint counterparts are automatically maintained along with the forward model, permitting sensitivity and optimization studies.

  • the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al. (1997a), Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999), Hill et al. (1999), Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004) (an overview on the model formulation can also be found in Adcroft et al. (2004c)):

模型元数据

{{htmlJSON.HowtoCite}}

MITgcm team (2021). MITgcm (Massachusetts Institute of Technology General Circulation Model), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/9df38d5e-8078-4c4e-bff2-be1ac4fd1b95
{{htmlJSON.Copy}}

Contributor(s)

Initial contribute : 2021-02-25

{{htmlJSON.CoContributor}}

Authorship

:  
View
Is authorship not correct? Feed back

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}
Yh9O7AJ38NDz