MEDUSA (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification)

This model is an ‘‘intermediate complexity’’ model of the plankton ecosystem founded on the oceanic nitrogen cycle.

intermediate complexityplankton ecosystemoceanic nitrogen cycle
  6

Contributor

contributed at 2021-02-07

Authorship

Affiliation:  
National Oceanography Centre, University of Southampton Waterfront Campus, UK
Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Application-focused categoriesNatural-perspectiveOcean regions

Model Description

English {{currentDetailLanguage}} English

Quoted from: https://ukesm.ac.uk/ukesm-component-models/ocean-biogeochemistry/ocean-biogeochemistry-ukesm1/# 

This model is an ‘‘intermediate complexity’’ model of the plankton ecosystem founded on the oceanic nitrogen cycle. Although highly simplified, MEDUSA is designed to include sufficient complexity for it to address major feedbacks between ocean biogeochemical cycles and anthropogenic drivers such as climate change (CC) and ocean acidification (OA).

In addition to nitrogen, MEDUSA includes the elemental cycles of carbon, oxygen, silicon, and iron, and links these together in a dual size-class nutrient-phytoplankton-zooplankton-detritus (NPZD) plankton ecosystem model.

In terms of nutrients, MEDUSA includes nitrogen, silicon, and iron nutrients that are required (together with sunlight) for the growth and carbon fixation of autotrophic phytoplankton.

MEDUSA’s phytoplankton are represented by “small” nanophytoplankton (typically photosynthetic prokaryotes) and “large” microphytoplankton, both of which require nitrogen and iron nutrients. The latter are assumed synonymous with siliceous diatoms, an important eukaryotic algal group, and additionally require silicic acid for their growth. Both phytoplankton groups are modelled with a dynamic chlorophyll quota to allow them to photoacclimate across a range of surface, submarine and seasonal light conditions.

In turn, MEDUSA’s phytoplankton are consumed by two size classes of heterotrophic grazers, microzooplankton and mesozooplankton. The former are assumed to be faster growing single-celled protists, such as flagellates, that consume “small” phytoplankton, while the latter are assumed to be multicellular metazoans, such as copepods, that consume both phytoplankton size classes as well as the microzooplankton.

Mortality and other loss processes of the modelled plankton components produce particles of non-living detrital material that sink into the ocean interior. As with the other components, these are divided into “small”, slow-sinking particles and “large”, fast-sinking particles. The former are represented explicitly in MEDUSA, while the latter are associated with ballasting biominerals and modelled implicitly.

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

MEDUSA team (2021). MEDUSA (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification), Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/a80786aa-74e8-49d7-86f7-bc4a9c5fc5b2
Copy

QR Code

Contributor(s)

Initial contribute: 2021-02-07

Authorship

Affiliation:  
National Oceanography Centre, University of Southampton Waterfront Campus, UK
Homepage:  
View
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm