ModelE is the GISS series of coupled atmosphere-ocean models, which provides the ability to simulate many different configurations of Earth System Models - including interactive atmospheric chemsitry, aerosols, carbon cycle and other tracers, as well as the standard atmosphere, ocean, sea ice and land surface components.



Initial contribute: 2021-09-06


NASA/Goddard Institute for Space Studies
Is authorship not correct? Feed back


Application-focused categoriesNatural-perspectiveOcean regions
Application-focused categoriesNatural-perspectiveAtmospheric regions
Application-focused categoriesIntegrated-perspectiveGlobal scale

Detailed Description

English {{currentDetailLanguage}} English

Quoted from:

  We simulate a suite of aerosols in the new GISS ModelE GCM: present-day sulfur species and the natural species sea salt, radionuclides 7Be (stratospheric source), and 210Pb (derived from 222Rn from soils). The natural species are used to test the model and to help diagnose the anthropogenic sulfur species. Model improvements over previous versions include increased vertical resolution, addition of a stratiform dissolved species budget (DSB), better tracer coupling to the boundary layer, and an improved relative humidity-dependent radiative scheme. The DSB reduces the loads of most soluble species since it increases stratiform precipitation scavenging. We compare the model with extensive surface and aircraft concentration measurements in the troposphere and stratosphere. We compare three different formulations of the 222Rn emissions and find that a scheme with reduced radon flux at high latitudes of the Northern Hemisphere for all seasons gives the best 210Pb results. Although the 222Rn emissions appear to be approximately the right order of magnitude, model 210Pb is too large. Conversely, our 7Be source is too small (since concentrations in the upper troposphere and stratosphere are deficient), while the 7Be surface concentrations are as observed. These radionuclide results suggests that model scavenging (by moist convection) is deficient. Our new model uses increased natural sulfur emissions; however, the DSB causes sulfate to be generally less than observed and indicates a need for additional sulfur oxidation mechanisms. Model radiative forcing for sulfate and sea salt are −0.54 and −1.1 W m−2, respectively. The anthropogenic sulfate forcing is −0.25 W m−2, less than the −0.68 W m−2 in our previous model mainly owing to an 18% decrease in industrial emissions.


Gavin Schmidt (2021). GISS GCM ModelE, Model Item, OpenGMS,


Initial contribute : 2021-09-06



NASA/Goddard Institute for Space Studies
Is authorship not correct? Feed back


Last modifier
HaoCheng Wang
Last modify time
Modify times
View History

QR Code


{{'; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Model Type:
Model Domain:
Incorporated models:

Model part of

larger framework

Hardware Requirements:
Software Requirements:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{}}

Page range:   {{articleUploading.pageRange}}

Link:   {{}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}