COVID-19 Mortality Projections for US States

Graphs show both the reported and projected number of COVID-19 deaths per day across the US and for individual states and metropolitan areas. For each US state, we use local data from mobile-phone GPS traces to quantify the changing impact of social-distancing measures on “flattening the curve.”

COVID-19MortalityUS States
  595

Contributor

contributed at 2020-05-01

Authorship

Affiliation:  
University of Texas
Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesProcess-perspectiveHuman-activity calculation

Model Description

Chinese {{currentDetailLanguage}} Chinese

Quote from: https://covid-19.tacc.utexas.edu/projections/

Use daily data on COVID-19 deaths, together with mobile-phone data that allows us to characterize each state's social-distancing behavior, to form three-week-ahead projections of COVID-19 death rates in all US states and most major metropolitan areas.

Key model assumptions: (1) The observed and projected numbers reflect confirmed COVID-19 deaths only. (2) The model estimates the extent of social distancing using geolocation data from mobile phones and assumes that the extent of social distancing does not change during the period of forecasting. (3) The model is designed to predict deaths resulting from only a single wave of COVID-19 transmission and cannot predict epidemiological dynamics resulting from a possible second wave.

The peak is defined as the day on which our model’s prediction for the average daily death rate stops increasing and begins to decrease.

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

The University of Texas COVID-19 Modeling Consortium (2020). COVID-19 Mortality Projections for US States, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/ea75f95b-3f4d-4008-9132-450d905c286d
Copy

QR Code

Contributor(s)

initial contribute: 2020-05-01

Authorship

Affiliation:  
University of Texas
Homepage:  
View
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}

You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm