COVID-19 Projections Using Machine Learning

Take a data-driven approach rooted in epidemiology to forecast infections and deaths from the COVID-19 / coronavirus epidemic in the US and around the world

COVID-19Machine LearningProjection
  738

Contributor

contributed at 2020-05-01

Authorship

Homepage:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesProcess-perspectiveHuman-activity calculation

Model Description

English {{currentDetailLanguage}} English

Quote from: https://covid19-projections.com/

Our COVID-19 prediction model adds the power of artificial intelligence on top of a classic infectious disease model. We developed a simulator based on the SEIR/SEIS model (Wikipedia) to simulate the COVID-19 epidemic in each region. The parameters/inputs of this simulator are then learned using machine learning techniques that attempts to minimize the error between the projected outputs and the actual results. We utilize daily deaths data reported by each region to forecast future reported deaths. After some additional validation techniques (to minimize a phenomenon called overfitting), we use the learned parameters to simulate the future and make projections.

The goal of this project is to showcase the strengths of artificial intelligence to tackle one of the world’s most difficult problems: predict the track of a pandemic. Here, we use a pure data-driven approach by letting the machine do the learning.

We are currently making projections for: the United States, all 50 US states + DC, and 40 countries (including all 27 EU countries).

Model Metadata

Name {{metadata.overview.name}}
Version {{metadata.overview.version}}
Model Type {{metadata.overview.modelType}}
Model Domain
{{domain}}
Sacle {{metadata.overview.scale}}

There is no overview about this model. You can click to add overview.

Purpose {{metadata.design.purpose}}
Principles
{{principle}}
Incorporated Models
{{incorporatedModel}}
Model part of larger framework: {{metadata.design.framework}}
Incorporated Models
{{process}}

There is no design info about this model. You can click to add overview.

Information {{metadata.usage.information}}
Initialization {{metadata.usage.initialization}}
Hardware Requirements {{metadata.usage.hardware}}
Software Requirements {{metadata.usage.software}}
Inputs
{{input}}
Outputs
{{output}}

There is no usage info about this model. You can click to add overview.

How to Cite

Youyang Gu (2020). COVID-19 Projections Using Machine Learning, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/fd3de74e-e7b6-4937-93cb-ff0226a48f91
Copy

QR Code

Contributor(s)

Initial contribute: 2020-05-01

Authorship

Homepage:  
View
Is authorship not correct? Feedback

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









You can link related {{typeName}} from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Related Items
Related Items

You can link resource from repository to this model item, or you can create a new {{typeName.toLowerCase()}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

These authorship information will be submitted to the contributor to review.

Cancel Submit
Model Classifications
Cancel Submit
Localizations + Add
{{ item.label }} {{ item.value }}
Model Name :
Cancel Submit
Name:
Version:
Model Type:
Model Domain:
Scale:
Purpose:
Principles:
Incorporated models:

Model part of

larger framework

Process:
Information:
Initialization:
Hardware Requirements:
Software Requirements:
Inputs:
Outputs:
Cancel Submit
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
Cancel Submit
Add Cancel

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
Cancel Confirm