COVID-19 Projections Using Machine Learning

Take a data-driven approach rooted in epidemiology to forecast infections and deaths from the COVID-19 / coronavirus epidemic in the US and around the world

COVID-19Machine LearningProjection



Initial contribute: 2020-05-01


Is authorship not correct? Feed back


Method-focused categoriesProcess-perspectiveHuman-activity calculation

Detailed Description

English {{currentDetailLanguage}} English

Quote from:

Our COVID-19 prediction model adds the power of artificial intelligence on top of a classic infectious disease model. We developed a simulator based on the SEIR/SEIS model (Wikipedia) to simulate the COVID-19 epidemic in each region. The parameters/inputs of this simulator are then learned using machine learning techniques that attempts to minimize the error between the projected outputs and the actual results. We utilize daily deaths data reported by each region to forecast future reported deaths. After some additional validation techniques (to minimize a phenomenon called overfitting), we use the learned parameters to simulate the future and make projections.

The goal of this project is to showcase the strengths of artificial intelligence to tackle one of the world’s most difficult problems: predict the track of a pandemic. Here, we use a pure data-driven approach by letting the machine do the learning.

We are currently making projections for: the United States, all 50 US states + DC, and 40 countries (including all 27 EU countries).



Youyang Gu (2020). COVID-19 Projections Using Machine Learning, Model Item, OpenGMS,


Initial contribute : 2020-05-01



Is authorship not correct? Feed back

QR Code


{{'; ')}}



Drop the file here, orclick to upload.
Select From My Space
+ add


Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者

编号 目的 修改内容 创建/修改日期 作者

时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型

* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传

{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}


Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{}}

Page range:   {{articleUploading.pageRange}}

Link:   {{}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}